Metric | Balanced Data- Under sample based on the repeated edited nearest neighbor method | Balanced Data- SMOTE | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-score | |
Euclidean (K = 5) | 0.84 | 0.87 | 0.75 | 0.80 | 0.68 | 0.17 | 0.37 | 0.22 |
Manhattan (K = 5) | 0.80 | 0.83 | 0.71 | 0.76 | 0.67 | 0.17 | 0.39 | 0.23 |
Cosine (K = 5) | 0.80 | 0.86 | 0.67 | 0.76 | 0.66 | 0.17 | 0.38 | 0.22 |
Minkowski (K = 5) | 0.84 | 0.87 | 0.75 | 0.80 | 0.65 | 0.18 | 0.45 | 0.25 |
Euclidean (K = 3) | 0.87 | 0.88 | 0.82 | 0.85 | 0.73 | 0.13 | 0.16 | 0.13 |
Manhattan (K = 3) | 0.82 | 0.84 | 0.75 | 0.79 | 0.70 | 0.12 | 0.17 | 0.13 |
Cosine (K = 3) | 0.85 | 0.88 | 0.78 | 0.83 | 0.68 | 0.12 | 0.20 | 0.14 |
Minkowski (K = 3) | 0.87 | 0.88 | 0.82 | 0.85 | 0.67 | 0.12 | 0.20 | 0.14 |
Logistic Regression | 0.71 | 0.70 | 0.60 | 0.65 | 0.66 | 0.17 | 0.40 | 0.23 |
Svm (RBF) | 0.80 | 0.78 | 0.78 | 0.78 | 0.66 | 0.15 | 0.32 | 0.20 |
Svm (POLY) | 0.82 | 0.84 | 0.75 | 0.79 | 0.66 | 0.16 | 0.35 | 0.21 |
Random Forest (INFORMATION-GAIN) | 0.76 | 0.78 | 0.64 | 0.70 | 0.76 | 0.13 | 0.14 | 0.12 |
Random Forest (GINI-INDEX) | 0.74 | 0.77 | 0.60 | 0.68 | 0.73 | 0.07 | 0.16 | 0.10 |
Decision Tree | 0.77 | 0.79 | 0.67 | 0.73 | 0.65 | 0.15 | 0.33 | 0.21 |