Skip to main content

Table 4 Performance of different classification algorithms after data balancing

From: Unravelling intubation challenges: a machine learning approach incorporating multiple predictive parameters

Metric

Balanced Data- Under sample based on the repeated edited nearest neighbor method

Balanced Data- SMOTE

Accuracy

Precision

Recall

F1-score

Accuracy

Precision

Recall

F1-score

Euclidean (K = 5)

0.84

0.87

0.75

0.80

0.68

0.17

0.37

0.22

Manhattan (K = 5)

0.80

0.83

0.71

0.76

0.67

0.17

0.39

0.23

Cosine (K = 5)

0.80

0.86

0.67

0.76

0.66

0.17

0.38

0.22

Minkowski (K = 5)

0.84

0.87

0.75

0.80

0.65

0.18

0.45

0.25

Euclidean (K = 3)

0.87

0.88

0.82

0.85

0.73

0.13

0.16

0.13

Manhattan (K = 3)

0.82

0.84

0.75

0.79

0.70

0.12

0.17

0.13

Cosine (K = 3)

0.85

0.88

0.78

0.83

0.68

0.12

0.20

0.14

Minkowski (K = 3)

0.87

0.88

0.82

0.85

0.67

0.12

0.20

0.14

Logistic Regression

0.71

0.70

0.60

0.65

0.66

0.17

0.40

0.23

Svm (RBF)

0.80

0.78

0.78

0.78

0.66

0.15

0.32

0.20

Svm (POLY)

0.82

0.84

0.75

0.79

0.66

0.16

0.35

0.21

Random Forest (INFORMATION-GAIN)

0.76

0.78

0.64

0.70

0.76

0.13

0.14

0.12

Random Forest

(GINI-INDEX)

0.74

0.77

0.60

0.68

0.73

0.07

0.16

0.10

Decision Tree

0.77

0.79

0.67

0.73

0.65

0.15

0.33

0.21