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Abstract 

Background Postoperative nausea and vomiting (PONV) is a frequently observed complication in patients under‑
going surgery under general anesthesia. Moreover, it is a frequent cause of distress and dissatisfaction in the early 
postoperative period. Currently, the classical scores used for predicting PONV have not yielded satisfactory results. 
Therefore, prognostic models for the prediction of early and delayed PONV were developed in this study to achieve 
satisfactory predictive performance.

Methods The retrospective data of inpatient adult patients admitted to the post‑anesthesia care unit after under‑
going surgical procedures under general anesthesia at the Sheba Medical Center, Israel, between September 1, 
2018, and September 1, 2023, were used in this study. An ensemble model of machine‑learning algorithms trained 
on the data of 35,003 patients was developed. The k‑fold cross‑validation method was used followed by splitting 
the data to train and test sets that optimally preserve the sociodemographic features of the patients.

Results Among the 35,003 patients, early and delayed PONV were observed in 1,340 (3.82%) and 6,582 (18.80%) 
patients, respectively. The proposed PONV prediction models correctly predicted early and delayed PONV in 83.6% 
and 74.8% of cases, respectively, outperforming the second‑best PONV prediction score (Koivuranta score) by 13.0% 
and 10.4%, respectively. Feature importance analysis revealed that the performance of the proposed prediction tools 
aligned with previous clinical knowledge, indicating their utility.

Conclusions The machine learning‑based models developed in this study enabled improved PONV prediction, 
thereby facilitating personalized care and improved patient outcomes.

Keywords Clinical machine learning, Postoperative nausea and vomiting prediction, Personalised medicine

Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution‑NonCommercial‑NoDerivatives 4.0 
International License, which permits any non‑commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by‑nc‑nd/4.0/.

BMC Anesthesiology

†Maxim Glebov and Teddy Lazebnik contributed equally to this work.

*Correspondence:
Maxim Glebov
hlebau@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12871-025-02987-2&domain=pdf


Page 2 of 11Glebov et al. BMC Anesthesiology          (2025) 25:135 

Introduction
Postoperative nausea and vomiting (PONV) are fre-
quently observed in patients undergoing surgery under 
anesthesia [1]. The risk of PONV is reported to be 30% 
and 80% in the general surgical population and high-risk 
cohorts, respectively [2]. PONV can influence patient 
satisfaction with anesthesia and surgery, prolong the 
duration of stay in the post-anesthesia care unit (PACU), 
increase the incidence of unplanned admissions after 
outpatient surgery, and increase the costs associated with 
medical treatment [3].

Previous studies have investigated the causes, preva-
lence, prevention, and treatment of PONV and developed 
evidence-based guidelines for the prevention and man-
agement of PONV [4]. The Apfel simplified risk score [2] 
and Koivuranta score [5] have been proposed for PONV 
risk assessment in the latest version of the guidelines [4]. 
However, despite their simplicity, these scores yield a 
predictive performance of less than 70%, on average [6]. 
Therefore, a better tool is required for the prediction of 
PONV to facilitate an accurate assessment of patient risk 
and formulation of evidence-based care for individual 
patients.

Machine learning algorithms have been used increas-
ingly to develop predictive models since the rise of artifi-
cial intelligence (AI) [7]. These models have been shown 
to outperform previous models based on classical statis-
tics [8].

Therefore, this study aimed to develop a model to pre-
dict the risk of early (during PACU stay) and delayed 
(first 24 postoperative hours) PONV based on machine 
learning algorithms. Furthermore, the performance of 
the proposed model was compared with that of the cur-
rently used prediction scores.

Methods and materials
The study was conducted following the principles of the 
Declaration of Helsinki of the World Medical Associa-
tion and was approved by the ethics committee of Sheba 
Medical Center, Israel (SMC 9646–22, January 25, 2023). 
The requirement for informed consent from patients was 
waived by the Ethical Committee. The study was guided 
by the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis (TRI-
POD + AI) framework.

Data collection
All adult (age > 18 years) inpatients admitted to the 
PACU who had undergone surgical procedures under 
general anesthesia (GA), GA with neuraxial anesthesia 
(NA), GA with a peripheral nerve block (PNB), or GA 
with NA and PNB at the Sheba Medical Center, Israel, 
between September 1, 2018, and September 1, 2023, were 

eligible for inclusion in this study. The exclusion criteria 
were: patients who underwent surgery under local anes-
thesia, PNB, NA, and/or light sedation only; patients 
who underwent cardiac surgery or obstetric procedures, 
including cesarean section; patients with American 
Society of Anesthesiologists (ASA) physical status clas-
sification of grade 5; and patients who arrived intubated 
or required postoperative mechanical ventilation. Addi-
tionally, patients who had received any medications with 
antiemetic properties within 12 h prior to surgery were 
excluded. Of note, our institutional protocol does not 
include the routine administration of antiemetic drugs 
as premedication. Patients with perioperative medi-
cal records with insufficient data were excluded. In this 
study, patients with missing data for any features used 
in the proposed prediction models were excluded from 
the analysis. This decision was made to ensure the com-
pleteness and integrity of the dataset for machine learn-
ing model development. Given the retrospective nature 
of the study, imputing missing values was avoided to 
prevent potential bias or inaccuracies in the predic-
tive modeling process. Data from our electronic patient 
records system, including biometric, medical, proce-
dural, and physiological variables, were extracted anony-
mously and analyzed retrospectively. Patient data were 
anonymized and deidentified before being accessed and 
analyzed. Early PONV was defined as any documented 
event requiring the administration of rescue antiemetic 
medication in the PACU, whereas delayed PONV was 
defined as an event requiring the administration of res-
cue antiemetic medication during the first 24 postopera-
tive hours. Based on the incidence of PONV described 
in the literature [2] and considering the complexity of 
the model as well as the number of features, we applied 
the rule of thumb requiring at least 10 outcome events 
per variable (EPV) to guide the calculation and justifica-
tion of the sample size. Our final analysis included 35,003 
patients, which exceeds the minimum required sample 
size.

Data analysis
The collected data underwent a three-step analysis. The 
statistical properties of the dataset were initially com-
puted and analyzed. The data were subsequently divided 
into training and validation cohorts to facilitate the train-
ing and evaluation of the prediction model, followed by 
the training of two machine-learning-based algorithms 
for the prediction of early and delayed PONV. In addi-
tion, the performances of the obtained prediction models 
were compared with those of currently available PONV 
prediction scores. Finally, we assessed the significance of 
each parameter in the prediction to investigate the clini-
cal reasoning identified and applied by the models. All 
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analyses were performed using Python programming 
language (version 3.9). Figure 1 shows a schematic of the 
workflow of the proposed framework.

Cohort analysis
The patient characteristics were compared and described 
using appropriate statistics. Student’s t-test or Mann–
Whitney U-test was used to compare continuous vari-
ables, and the Chi-squared test was used for categorical 
variables. Data are expressed as median (interquartile 
range [IQR]) and proportion, as appropriate. Compari-
sons between groups were performed using a one-way 
analysis of variance (ANOVA). Pearson correlation 
matrix from the cohort was computed to explore the 
linear and monotonic dependencies between the fea-
tures and between the features and targets (i.e., early and 
delayed PONV).

Prediction tool training
The study population was divided into a training cohort 
(from which the proposed algorithm was derived) and a 
validation cohort (from which the prediction models were 
applied and tested). A popular cross-validation approach 
[9] that repeats the splitting of the study population into 
training and validation groups multiple times was used 
to achieve a more statistically resilient evaluation of the 

performance of the prediction models [10]. In particular, 
the k-fold cross-validation method, which splits the data 
into k identically sized and pairwise distinct cohorts, was 
used in this study. Each of these cohorts was used as the 
validation cohort once, and the remaining cohorts were 
used as the training cohorts, resulting in k validations. 
The average performance of the prediction models in 
these validation cohorts was computed. The population 
was split into training and validation cohorts such that 
the age and sex distributions of both cohorts were statis-
tically similar to ensure that the validation set followed a 
distribution similar to that of the training set, as required 
in a clinical-related machine learning analysis [11]. The 
age and sex distributions of each cohort were similar to 
those of all other cohorts in the k-fold cross-validation 
method. Notably, we did not control for the target fea-
tures to avoid data leakage. This condition is formalized 
as an optimization task such that dataset D is divided 
into k size-identical and pairwise distinct subsets. This 
minimizes the average distance between the distributions 
defined by the age and sex distributions of each cohort 
and those of any other cohort. Intuitively, this task is a 
private case of the nurse scheduling problem [12] (which 
is known to be NP-hard [13]). Based on Goodman et al. 
[14], a close-to-optimal solution was obtained using the 
Directed Bee Colony Optimization algorithm [15]. An 

Fig. 1 A schematic view of the workflow of the proposed framework
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ensemble of machine learning and feature selection algo-
rithms were analyzed after each split in the training and 
validation cohorts to maximize the accuracy of the pre-
diction model. The k-fold cross-validation method was 
used in the training cohort to ensure that the obtained 
prediction model was robust for the prevention of over-
fitting of the prediction model in the training cohort and 
to improve data stability [10]. The divided training cohort 
was analyzed using a Tree-based Pipeline Optimization 
Tool (TPOT) [16], an automated machine learning tool 
that optimizes machine learning pipelines using genetic 
programming [17]. Furthermore, the hyperparameters of 
the model were tuned using the grid search method [18] 
to improve its performance in terms of accuracy. Multi-
ple combinations of all hyperparameters of the prediction 
model were sampled to determine the hyperparameter 
values that optimized the average accuracy of the k-fold 
cross-validation examination over the training cohort 
[19]. In addition, post-pruning methods were applied to 
tree-based models to further improve the generalization 
and performance of these prediction models [20]. Impor-
tantly, because the distribution of target features can be 
unbalanced for some folds, we allow TPOT to use Syn-
thetic Minority Oversampling Technique (SMOTE), an 
oversampling technique that generates synthetic samples 
from the minority class, to tackle this challenge. In order 
to provide context for the performance of the obtained 
model, we also trained a logistic regression model on the 
data following the same process.

Feature importance analysis
The importance of the parameters was evaluated using 
the information gain method [21]. For each parameter 
used by the prediction models, a feature was removed 
each time, and the models were re-trained such that the 
average accuracy obtained from the k-fold cross-valida-
tion analysis was stored, resulting in an accuracy score 
for each removed parameter. A new parameter was intro-
duced to the prediction models subsequently, which was 
generated by sampling normally distributed noise with 
a mean of 0 and a standard deviation of 1. The decrease 
(or increase) compared to the accuracy of the prediction 
models with all the parameters and without the “noise” 
parameter was computed for all these cases. All the 
parameters with absolute differences smaller than those 
obtained from the “noise” parameter case were set to 
zero. All values were normalized such that their sum was 
equal to one (i.e., L1 normalization) to obtain the impor-
tance of the parameters for each instance of the predic-
tion models. In addition, SHapley Additive exPlanations 
(SHAP) analysis was used to gain insight into the influ-
ence of various features on the obtained prediction mod-
els [22]. SHAP values can be used to explain the output of 

a machine learning model by attributing the contribution 
of each individual feature to a particular prediction [23]. 
SHAP analysis originated in game theory and provides 
a method to estimate the contribution of features to the 
model’s final prediction. The SHAP values quantify the 
extent to which each feature influences the prediction in 
feature importance analysis. A positive SHAP value for a 
feature indicates that it contributes positively to the pre-
diction, whereas a negative value indicates that it has a 
negative impact.

Results
Descriptive statistics
The final cohort comprised 35,003 patients. The study 
included 16,321 women (46.59%) and the median patient 
age was 51.0 years [IQR 36.3—69.1]. Detailed character-
istics of the cohort are presented in Table 1.

Figure 2 shows the Pearson correlation matrix between 
the features of the prediction model and themselves, 
including the target features. Most features were not cor-
related with each other, as the absolute values were close 
to zero. Notably, the Pearson correlation between early 
PONV and delayed PONV is also low. To further assess 
the relationship between these binary, pair-wised vari-
ables, we performed the McNemar test, which confirmed 
a statistically significant difference between early and 
delayed PONV (p < 0.0001).

The performance of the proposed prediction model 
and comparison with classical scores
Two prediction models were created: one to predict “early 
PONV” and one to predict “delayed PONV”. The “early 
PONV” is found to be based on the XGboost model while 
the “delayed PONV” is found to be an ensemble of a 
k-nearest neighbors model with a Random Forest model. 
The receiver operating characteristic (ROC) curve and 
the area under the ROC curve (AUC) were calculated to 
evaluate the prediction tools, as presented in Fig. 3. The 
AUC scores were 0.872 and 0.708 for predicting early and 
delayed PONV, respectively.

The accuracy, recall, precision, and F1-score metrics 
for the proposed prediction models were determined 
using a k-fold cross-validation method (k = 5). In addi-
tion, to obtain a relative comparison to the currently 
used scores to evaluate the risk of early and delayed 
PONV, we computed these metrics for the Apfel 
and Koivuranta scores. The inclusion of the risk fac-
tors described in the guidelines was for the purpose 
of completeness, even though it is a guideline for the 
use of prophylactic antiemetics rather than a genuine 
risk score to estimate the risk of PONV [4]. Table  2. 
summarizes the results of the analysis. The proposed 
prediction models outperformed all three scores for 
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both tasks. The proposed prediction model achieved 
an accuracy of 0.836 for predicting early PONV, 
whereas the other prediction scores achieved accura-
cies of 0.644, 0.706, and 0.536, respectively. Similarly, 
the proposed prediction model achieved an accuracy 
of 0.748 for predicting delayed PONV, whereas the 
other prediction scores achieved accuracies of 0.570, 
0.644, and 0.585, respectively. A one-sided ANOVA 
test performed for each task revealed that the pro-
posed prediction models exhibited statistically signifi-
cant improvements in terms of accuracy (p < 0.001 and 

p < 0.001, respectively). The logistic regression model, 
operating as a baseline model, achieved similar results 
to the previous prediction models (such as Apfel) fur-
ther emphasizing the need for non-linear and more 
sophisticated modeling approaches to effectively cap-
ture the complex dynamics within the data.

Feature importance
The information gain from each feature was computed 
for both tasks to determine its significance as a predictive 
model. Figure  4 shows the results of this analysis. Fea-
tures with importance scores that were lower than those 
attributed to random noise were excluded from each 
prediction model. The variables were arranged from left 
to right, and their order was determined based on their 
respective weights for the PONV effect.

Specifically, Fig.  4a illustrates the top five predictors for 
early PONV, identified as the duration of anesthesia, the 
administration of non-opioid analgesics in the PACU, the 
duration of surgery, the volume of intraoperative crystal-
loids administered, and the type of surgical procedure 
undertaken. Conversely, Fig. 4b delineates the primary five 
factors influencing the incidence of delayed PONV, which 
include the type of surgical procedure, the operating depart-
ment, the duration of surgery, the duration of anesthesia, 
and the volume of intraoperative crystalloids administered.

The SHAP values [22] for both prediction models were 
computed to obtain a better clinical understanding of the 
contribution of the variables to the model. Figure 5 shows 
the SHAP values of the top 15 combinations of variables. 
The color ranges from blue to red, indicating low to high 
values, and the y-axis indicates an increase or decrease 
in the probability of early or delayed PONV incidence 
according to each prediction model. The early PONV 
prediction model is shown in Fig. 5a.

In the context of the early PONV prediction model, sev-
eral factors were identified as significant risk contributors: 
the laparoscopic surgical approach, extended durations of 
anesthesia and surgery, elevated Body Mass Index (BMI), 
higher doses of intraoperative morphine, younger age, 
increased volume of intraoperative crystalloids, greater 
doses of intraoperative fentanyl, and higher intraoperative 
doses of neostigmine. This constellation of variables, rep-
resented by a spectrum of blue and red dots, underscored 
their associative risk elevation for early PONV.

Conversely, Fig. 5b elucidates factors associated with an 
augmented risk of delayed PONV. Notably, these include 
prolonged anesthesia and surgery durations, increased 
administration of postoperative non-opioid analgesics, 
higher intraoperative morphine dosages, a larger volume 
of intraoperative crystalloids, higher doses of postopera-
tive long-acting opioids, and postoperative pain levels 
assessed as moderate or higher.

Table 1 Demographic and baseline characteristics of the cohort

All data are presented as the median [IQR] or n (%)

Abbreviations: BMI Body mass index, ASA-PS The American Society of 
Anesthesiologists (ASA) physical status classification, PACU  Post-anesthesia care 
unit

Characteristic All cohort

Age (years) 51.0 [36.3—69.1]

Female 16,321 (46.59%)

BMI (kg/m2) 25.9 [22.9—29.6]

ASA‑PS

 1 4,952 (14.14%)

 2 8,615 (24.59%)

 3 8,147 (23.26%)

 4 951 (2.71%)

Smoking 7,636 (21.80%)

Elective surgery 28,583 (81.59%)

Laparoscopic approach 8,446 (24.11%)

Surgery duration (min) 67 [38—122]

Anesthesia duration (min) 104 [68—174]

PACU stay (min) 42 [28—71]

History of PONV 546 (1.56%)

Inhalational anesthetic 31,279 (89.28%)

Intraoperative long‑acting opioid 30,160 (86.09%)

Apfel simplified risk score

 0 4,815 (13.76%)

 1 13,577 (38.79%)

 2 13,288 (37.96%)

 3 3,224 (9.21%)

 4 99 (0.28%)

Guidelines’ risk stratification

1–2 risk factors 20,967 (59.90%)

 > 2 risk factors 12,382 (35.37%)

Number of PONV prophylactic drugs

 0 5,119 (14.61%)

 1 14,252 (40.68%)

 2 14,776 (42.18%)

 3 854 (2.44%)

Guidelines adherent prophylaxis 9,291 (25.52%)

Early PONV 1,340 (3.82%)

Delayed PONV 6,585 (18.8%)
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Discussion
The primary objective of this study was to develop a 
computational model capable of assessing the probabil-
ity of PONV. Novel machine-learning-based prediction 

Fig. 2 Pearson correlations between the dataset’s features. Abbreviations: BMI, body mass index; ASA_class, The American Society 
of Anesthesiologists (ASA) physical status classification; Proc_CPT, procedure CPT (The Current Procedural Terminology); Surg_urg, surgery urgency; 
Surg_dur, surgery duration; Hx_ponv, history of PONV; AW_mgmt, airway management; Neur_anesth, neuraxial anesthesia; PNB, peripheral 
nerve block; Inh_anesth, inhalational anesthesia; TIVA, total intravenous anesthesia; InOpLngOp, intraoperative long‑acting opioid; InOpCryst, 
intraoperative crystalloid volume; N_PONV_Meds, number of PONV prophylaxis drugs; G_Adh_Proph: adherence to guidelines; PONV_PACU, PONV 
in the PACU; PONV_24H, PONV within 24 h

models were developed and validated using a com-
prehensive dataset from a diverse surgical population, 
including records of over 35,003 patients, to predict 
the risk of early and delayed PONV. The findings of the 
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present study revealed the complexity of PONV pre-
diction, as the analysis revealed multidimensional and 
nonlinear correlations between most variables and the 
risk of PONV (Fig.  2). This underscores the impor-
tance of using statistical methods other than traditional 
methods to utilize machine learning techniques [24–
26], enabling us to capture the intricate relationships 
that influence PONV.

Artificial intelligence and machine learning are widely 
used in modern medicine, demonstrating significant 
predictive utility in various clinical applications [27–29]. 
Specifically in anesthesiology, various ML models were 
used to predict post induction hypotension [30], post-
operative complications [31], and mortality [32]. How-
ever, the application of ML in predicting PONV is novel, 
marking a significant contribution of this study to the 
field.

The proposed prediction models demonstrated good 
discriminative performance, as evidenced by high AUC 
values of 0.872 and 0.708 for predicting the incidence 
of early and delayed PONV, respectively. A comparative 
analysis with classical PONV prediction scores, such as 
the Apfel and Koivuranta scores, revealed that the pro-
posed prediction models significantly outperformed 
traditional approaches (Table  2.). Thus, these metrics 
suggest that the proposed prediction models can effec-
tively identify patients at risk of developing PONV, 
thereby enabling early intervention and personalized 
care.

Consistent with the findings of previous studies, the 
present study revealed that the duration of anesthesia 
and surgery, laparoscopic surgical approach, type of pro-
cedure, the use of opioids, and younger age are impor-
tant predictors of early PONV [4]. The prediction model 

Fig. 3 The receiver operating characteristic (ROC) curve of the obtained prediction models for the early and delayed PONV tasks

Table 2 Comparison of the prediction performance of the proposed prediction models with the simplified Apfel score, Koivuranta 
score, and risk factors according to the fourth consensus guideline for the management of PONV. The results are presented as the 
mean of the k‑fold cross‑validation analysis (k=5). The best prediction tool for each metric is highlighted in bold font

Task Prediction model Accuracy Recall Precision F1-score

Early PONV Our 0.836 0.819 0.829 0.824
Logistic regression 0.648 0.203 0.541 0.292

Apfel 0.644 0.417 0.777 0.543

Koivuranta 0.706 0.660 0.767 0.710

Guidelines risk factors 0.536 0.413 0.557 0.475

Delayed PONV Our 0.748 0.749 0.740 0.745
Logistic regression 0.650 0.187 0.532 0.274

Apfel 0.570 0.237 0.734 0.358

Koivuranta 0.644 0.541 0.689 0.606

Guidelines risk factors 0.585 0.654 0.580 0.615
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developed for predicting delayed PONV has a similar dis-
tribution of feature importance. These findings validate 
the proposed model.

However, in contrast with the findings of previous stud-
ies describing the protective effect of crystalloid infu-
sion on PONV [33], the present study revealed that the 
volume of intraoperative crystalloids was an important 
independent predictor of PONV. A recent meta-analysis 
reported the protective effect is limited to healthy patients 
(ASA physical status 1–2) undergoing procedures that 

are ambulatory or require a short length of stay [34]. The 
reasons for the occurrence of PONV due to this variable 
remain unclear and require further investigation.

We acknowledge that some of the predictors we used 
to develop the model, such as postoperative opioid 
administration, and pain levels in the PACU, are "late 
features"—variables that may not be available until after 
surgery or upon arrival in the PACU. Our model aims 
to provide a versatile tool for PONV prediction across 
different time points. In practice, the tool can serve two 

Fig. 4 a, A feature importance analysis of the early PONV prediction model. b, A feature importance analysis of the delayed PONV prediction 
model. Abbreviations: Anesth_dur, anesthesia duration; PoOpNonOp, postoperative non‑opioid analgesics; Surg_dur, surgery duration; InOpCryst, 
intraoperative crystalloids; Proc_CPT, procedure CPT (The Current Procedural Terminology); InOp_Fent, intraoperative fentanyl; InOp_Morph, 
intraoperative morphine; InOpUrine, intraoperative urine output; InOpLngOp, intraoperative long acting opioids; InOp_Midaz, intraoperative 
midazolam; PainModPACU, pain ≥ moderate in PACU; Operating_dept, operating department; BMI, body mass index
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Fig. 5 a, A SHAP function value of each feature for the early PONV prediction model b, A SHAP function value of each feature for the delayed 
PONV prediction model. Abbreviations: Anesth_dur, anesthesia duration; PoOpNonOp, postoperative non‑opioid analgesics; Surg_dur, surgery 
duration; InOpCryst, intraoperative crystalloids; Proc_CPT, procedure CPT (The Current Procedural Terminology); InOp_Fent, intraoperative fentanyl; 
InOp_Morph, intraoperative morphine; InOpUrine, intraoperative urine output; InOpLngOp, intraoperative long acting opioids; InOp_Midaz, 
intraoperative midazolam; PainModPACU, pain ≥ moderate in PACU; Operating_dept, operating department; BMI, body mass index
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distinct purposes: 1) preoperative risk assessment—by 
incorporating readily available preoperative and demo-
graphic variables (e.g., age, history of PONV, type of 
surgery, anesthesia plan, etc.), the model can offer an 
initial prediction to guide preventive strategies. This 
usage aligns with current clinical needs for early iden-
tification and intervention to reduce PONV risk; 2) 
dynamic intraoperative and PACU updates—we envi-
sion that, in settings where continuous data input is 
feasible, such as within an integrated electronic health 
record system, the model could dynamically update its 
predictions based on intraoperative and early postop-
erative data. This adaptive approach would allow cli-
nicians to adjust antiemetic interventions as the risk 
profile evolves during surgery, enhancing the model’s 
value in real-time decision support.

The results of this study lay the groundwork for the 
development of a predictive calculator aimed at pro-
viding anesthesiologists with real-time assessments of 
PONV risk. This tool is expected to enhance preventive 
measures and improve patient outcomes by integrating 
"assistive" decision-support platforms into local elec-
tronic health record systems. Future studies should focus 
on the real-world implementation and clinical integration 
of these prediction tools. However, one of the major chal-
lenges with implementation is the gap in comprehension 
and trust in AI technologies among practicing clinicians, 
which is critical for their adoption [35]. Additionally, the 
number of ML articles published in technical journals is 
much higher than those published in medical journals, 
highlighting the fact that translation into clinical practice 
is still fraught with multiple hurdles [36].

This study had some limitations. The use of retro-
spective data from a single medical center may limit 
the generalizability of prediction tools across different 
clinical settings. Specifically, patient populations, treat-
ment protocols, and diagnostic tools can vary signifi-
cantly between institutions, meaning that an algorithm 
developed from one dataset may not perform as well in 
other contexts due to implicit bias. The proposed tools 
must be validated in multiple clinical contexts to con-
firm the robustness and external validity of the predic-
tion tools. Multicenter studies with larger and more 
diverse datasets must be conducted to validate the pre-
diction tools across different clinical settings.

While our machine learning models successfully 
identify patterns correlated with PONV and demon-
strate strong predictive performance, it is important 
to emphasize that these correlations do not inherently 
establish causation [37]. Machine learning algorithms 
discern statistical associations rather than causal path-
ways. This distinction underscores the need for pro-
spective studies and rigorous clinical validation.

Conclusions
This study represents a significant step forward in the 
prediction and assessment of PONV in patients under-
going surgery. These machine learning-based predic-
tion tools exhibit strong discrimination ability, clinical 
interpretability, and superior performance compared to 
traditional scoring systems. These findings hold signifi-
cant promise in clinical practice, as they enable individ-
ualized PONV risk assessment.
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