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Unravelling intubation challenges: R

a machine learning approach incorporating
multiple predictive parameters
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Abstract

Background To protect patients during anesthesia, difficult airway management is a serious issue that needs to be
carefully planned for and carried out. Machine learning prediction tools have recently become increasingly common
in medicine, frequently surpassing more established techniques. This study aims to utilize machine learning tech-
niques on predictive parameters for challenging airway management.

Methods This study was cross-sectional. The Shahid Beheshti University of Medical Sciences in Iran’s Loghman Hakim
and Shahid Labbafinezhad hospitals provided 622 records in total for analysis. Using the forest of trees approach

and feature importance, important features were chosen. The Synthetic Minority Oversampling Technique (SMOTE)
and repeated edited nearest neighbor under-sampling were used to balance the data. Using Python and 10-fold
cross-validation, seven machine learning algorithms were assessed: Logistic Regression, Support Vector Machines
(SVM), Random Forest (INFORMATION-GAIN and GINI-INDEX), Decision Tree, and K-Nearest Neighbors (KNN). Metrics
like F-measure, AUC, Recall, Accuracy, Specificity, and Precision were used to evaluate the performance of the model.

Results Twenty-four important features were chosen from the original 32 features. The under-sampling strategy
produced better results than SMOTE. Among the algorithms, KNN (Euclidean, Minkowski) had better performance
than other algorithms. The highest values for accuracy, precision, recall, F-measure, and AUC were obtained at 0.87,
0.88,0.82,0.85, and 0.87, respectively.

Conclusion Algorithms for machine learning provide insightful information for anticipating challenging airway
management. By making it possible to forecast airway difficulties more accurately, these techniques can potentially
improve clinical practice and patient outcomes.

Keywords Difficult airway, Airway management, Intratracheal intubation, Anesthesia, Machine learning algorithms,
Artificial intelligence
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Introduction

A difficult airway scenario occurs when a healthcare
provider with adequate airway management skills faces
challenges with laryngoscopy, intubation of the tra-
chea, and more especially, ventilating and oxygenating
the lungs. These challenges may be predicted based on
the patient’s anatomic or pathologic characteristics or
may arise unexpectedly while the procedure is being
performed. Additionally, resistance to tube placement
may occur in some patients [1]. Unexpectedly diffi-
cult airway situations increase the risk of brain dam-
age and death [2]. It follows to reduce these risks that
preoperative identification of patients at risk for air-
way difficulties is warranted [3, 4]. Nevertheless, res-
piratory distress prediction remains a challenging task,
and existing predictive accuracy is still quite low [5].
In addition, existing comprehensive clinical evaluation
approaches for difficult airways, including the modi-
fied LEMON criteria and the Simplified Airway Risk
Index (SARI) model, cannot achieve the desired pre-
diction performance in predicting airway management
difficulty [6, 7]. Difficult airway management requires a
structured procedure, careful evaluation, and a focused
effort to maintain oxygenation and minimize compli-
cations [8]. Artificial intelligence (AI) encompasses a
diverse array of technologies, principles, and method-
ologies aimed at fostering the development of systems
that can replicate and enhance human cognitive abili-
ties. Algorithms are central to AI’s functionality, which
drives reasoning, problem-solving, and analytical tasks
[9]. AI rapidly transforms various aspects of our lives,
and its impact on the medical field is particularly pro-
found. As Al technologies continue to evolve, their
potential to revolutionize healthcare delivery is becom-
ing increasingly evident [10]. Machine learning (ML) is
a subfield of Al that enables systems to learn from data
without being explicitly programmed. ML algorithms
can identify patterns, predict, and adapt to new infor-
mation [11-13]. Some research has addressed difficult
airway prediction and management using machine
learning (Table 1).

These studies show that Machine learning algorithms
hold significant promise for predicting airway manage-
ment challenges and the need for intubation, yet chal-
lenges such as selecting more comprehensive predictive
features, enhancing data quality, and conducting more
rigorous model evaluations persist.

Despite its clinical and research significance, no stud-
ies have utilized machine learning approaches to pre-
dict a difficult airway from this study’s collated and
localized data. Therefore, a data balancing technique
was applied to this dataset, and significant features
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were selected. Then, machine learning algorithms were
utilized to predict difficult airway management.

Methods

Study design, setting, and participants

This cross-sectional study assessed 622 adult patients
scheduled for elective surgery and referred to Logh-
man Hakim and Labbafinezhad Hospitals, Tehran,
Iran. Inclusion criteria: (1) Patient scheduled for elec-
tive surgery requiring general anesthesia and tracheal
intubation, (2) The patient should not have any con-
traindications to the administration of neuromuscular
blocking agents, (3) Age greater than 18 years, (4) Abil-
ity to open the mouth with inter incisor distance greater
than 2 centimeters (for laryngoscope placement), (5)
absence of recent cervical spine trauma (<2 months),
(6) No contraindications to anesthesia induction before
airway placement. Exclusion criteria: (1) The develop-
ment of new-onset acute neck pain or injury between
the clinic visit and surgery, (2) Patient’s consent with-
drawal from the study at any time. Demographic infor-
mation and a history of medical comorbidities were
preoperatively collected from the patient using a struc-
tured questionnaire (Appendix). Airway assessments
were performed and documented in standardized
forms according to the predefined variables. A metal
inclinometer and a mobile inclinometer app (Goniom-
eter Records, Orthopedic Research Group Initiative,
Indian Orthopedic Research Group, Last updated Sep-
tember 2018) are the two primary tools for measuring
the cervical range of motion angles. Anesthesia induc-
tion was tailored to the patient’s condition following a
complete pre-operative assessment. Ventilation was
initiated using an ambu bag, and the bag-mask ventila-
tion score (Grade I: easy to ventilate, Grade II: requir-
ing nasopharyngeal or oral airway to ventilate, Grade
II1: difficult to ventilate or require two providers, Grade
IV: unable to ventilate using all the above maneuvers.
Grades III and IV are defined as difficult mask ventila-
tion) [19] was documented. Subsequently, laryngoscopy
was performed using a Macintosh laryngoscope with an
appropriately sized blade based on the patient’s anat-
omy. The Cormack-Lehane score was recorded based on
the observations and reports of the intubating person-
nel. In the event of a difficult airway at any stage, the
necessary equipment or personnel were utilized based
on the patient’s condition. Data were entered daily into
an Excel spreadsheet by an anesthesia assistant. These
data were then analyzed using the Python program-
ming language, and machine learning algorithms were
applied and evaluated.
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* Data collection

* Preprocessing

* Mean-Mode, MIN-MAX , One Hot Encoding

P N
« Data balancing
. Undersampling(Under sample based on the repeated edited nearest neighbor method),
Oversampling(SMOTE ) )

+ SVM, LR, KNN, RF, DT

* Selection of data mining algorithms

« Evaluation

1

2
e
N

4

5

» Accuracy, Precistion, Recall- F-Score, Roc Curve

Fig. 1 Shows the step-by-step breakdown of the methodology

Data preprocessing

First, features that had the same value in most records
were removed. Then the issue of missing data in con-
tinuous features was addressed using imputation by
mean. Continuous features were then normalized using
the MIN-MAX formula, while categorical features were

converted to binary representations using One-Hot
Encoding. This concluded the data preprocessing stage.

Data balancing
Before data balancing, the 10-fold cross-validation
method separated the training and testing data. Due to

Table 2 Features that have a discrete value

Features Feature importance Mean Std Description

Agel(year) 0.062004 43.098 14.08

BMI (kg/mz) 0.041490 27.698 583 Body Mass Index

Mouth Opening(cm) 0.068357 4376 0.77 The linear distance between the edge of the upper tooth (gum) and the edge
of the lower tooth on the same side.

Neck Circumference(cm) 0.086946 37405 363 The measurement of Neck Circumference (NC) entails assessing the circumference
of the neck in its neutral position, just below the Adam’s apple.

Neck Length(cm) 0.023407 11.165 133 This parameter is determined by measuring the distance from the external occipital
protuberance to the seventh cervical vertebra in the neutral position of the neck.
A measurement of less than 7 cm is correlated with an increased probability
of encountering a difficult airway.

Thyromental Distance(cm) 0.030534 9.361 149 It is determined by measuring the linear distance between the thyroid notch
and the mentum in the condition of full neck extension.

Sternomental Distance(cm) 0.106998 16.648 211 The linear distance between the upper border of the manubrium of the sternum
and the mentum in the condition of full neck extension.

Rhinionmentum Distance(cm) 0.023414 6.795 087 The linear distance between the mentum and the base of the nasal septum.

Neck extension degree (clinometry) 0.044165 43511 11.75  The angle between the horizon line and the neck in the state of maximum neck
extension.

Anterior neck Flexion degree (clinometry) 0.039345 71.645 1311 The angle between the horizon line and the neck in the state of maximum flexion
of the neck.

left lateral neck flexion degree (clinometry) 0.032863 45463 10.50  The angle between the midline and the maximum bending of the neck to the left.

Right lateral neck flexion degree (clinometry) 0.032591 47.778 1102 The angle between the midline and the maximum bending of the neck to the right.

Neck extension degree (application) 0.037774 41.502 13.13  The angle between the horizon line and the neck in the state of maximum neck
extension.

Anterior neck Flexion degree(application) 0.053250 73.685 1456  The angle between the horizon line and the neck in the state of maximum flexion
of the neck.

left lateral neck flexion degree 0.025654 40.704 1210 The angle between the midline and the maximum bending of the neck to the left.

(application)

Right lateral neck flexion degree (application) 0.030172 53357 19.62  The angle between the midline and the maximum bending of the neck to the right.

AASI 0.031471 0.622 0.14 AcromioAxillo Suprasternal Notch Index.

Hyomental Distance(cm) 0.045787 5814 0.98 The linear distance between the hyoid bone and the mentum in the condition of full
neck extension.

HMDn 0.025921 4152 0.69 The ratio of hyomental distance in neutral head position

HMDR 0.027409 1418 0.25 The ratio of hyomental distance in neutral head position (HMDn) to hyomental

distance in full extension of the head (HMDe).
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the imbalanced nature of the data, various balancing
techniques were employed in this step. This phase was
carried out in two distinct steps:

Step 1: The SMOTE algorithm was applied to the
training data in each fold, augmenting the records of
the minority class to match the size of the majority
class records. This procedure resulted in a balanced
training dataset. The prepared training data was then
utilized for the subsequent phase of the experiment.
Step 2: This step employed the Repeated Edited
Nearest Neighbor (RENN) under-sampling tech-
nique to address the data imbalance. This method
involves reducing the majority class data points to
match the size of the minority class. Following data
balancing, the hold-out method was utilized to divide
the balanced dataset into training (70%) and testing
(30%) sets. Feature importance was assessed using a
forest of trees.

Selecting data mining algorithms
In this phase, various classification algorithms, including
Logistic Regression, SVM (RBF), SVM (POLY), Random
Forest (INFORMATION-GAIN), Random Forest (GINI-
INDEX), Decision Tree, and KNN (Euclidean, Manhat-
tan, Cosine, Minkowski), were employed for data mining
on both the balanced datasets obtained from step 1 and
step 2. Below is a brief description of each algorithm:
Logistic regression is a statistics technique that is uti-
lized to model the relationship between a binary outcome
variable and one or more predictor variables. In logistic
regression, the estimate of the probability of the outcome
variable is based on the values of the predictor vari-
ables [20]. SVM stands out as one of the most efficacious

Table 3 Features that have a continuous value
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algorithms in machine learning, especially for classifica-
tion issues. SVMs can do this by constructing an optimal
hyperplane that effectively partitions the data points that
belong to different classes. This is done by maximizing
the margin between the classes, which ultimately leads to
a model with a superior ability to generalize [21].

Decision trees provide a tree-like hierarchical struc-
ture for use in machine learning models. This struc-
ture features inner nodes representing data attributes,
branches representing decision rules based on those
attributes, and terminal leaf nodes representing the
predicted outcome or class label [22]. Random Forest
is an ensemble learning technique that uses decision
trees as its base learners. It is operated by construct-
ing a large number of decision trees. Their predictions
are then aggregated to improve the final classification
or regression output. The core principle of Random
Forest is to generate a collection of decision trees dur-
ing the training phase, with each tree producing a dis-
tinct prediction. In the predicting phase, the Random
Forest algorithm achieves the result by combining the
predictions of all the constituent decision trees [23].
KNN is a common nonparametric machine learn-
ing algorithm that can be applied to classification and
regression problems. Its function is the identification
of the k-nearest data points (neighbors) of a new data
point. Then, based on the majority vote (classification)
or the average (regression) of the labels or values of its
K-nearest neighbors, the class label or value of the new
data point is predicted [24].

Algorithm evaluation
In this phase, the performance of the algorithms was
assessed using a suite of evaluation metrics, including

Features Feature importance  Frequency N (%)

Description

Class1 Class2

Class 3

Class 4

0.018674
0.034665

Loose front teeth
MASK Ventilation Score

113(18)

372(60)  132(22)

Mallampati Score 0.030622 190(31)  220(35)

Snoring 0.027833 165(26)

112(18)

190(31)

Class 1: present loose tooth/teeth.

Grade I: easy to ventilate, Grade II: requires naso-
pharyngeal or oral airway to ventilate, Grade llI: difficult
to ventilate or requires two providers, Grade IV: unable
to ventilate using all the above maneuvers. Grades Il
and IV are defined as difficult mask ventilation)

22(3) This classification system comprises four classes. To
assess it, the patient is requested to open their mouth
and protrude their tongue silently, allowing for obser-
vation of the pharyngeal structures. The classification
is as follows: 1: Soft palate, pharynx, entire uvula,

and pillars visible, 2: Soft palate, pharynx, and part

of the uvula visible, 3: Soft palate and base of the uvula
visible, 4: Only the hard palate visible.

History of snoring during sleep declared by the patient
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accuracy, specificity, precision, recall, F-measure, and

the

area under the ROC curve (AUC). These metrics

provided comprehensive insights into the performance
of each algorithm. We define the evaluation indices as:
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Recall = s 4
T IPrEN @
(2 x Precision x Recall)
F — measure = (5)

(Precision + Recall)

In Eq. (1) to (4), TP, TN, FP, and FN denote the True-
Positive, True-Negative, False-Positive, and False-Neg-
ative, respectively. The result of Eq. (5) is calculated
using the results of Eq. (3) and Eq. (4). Figure 1 shows
the step-by-step breakdown of the methodology

employed in this study.
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Fig. 2 Scatter plot of selected variables concerning two classes after balancing (under-sampling based on the repeated edited nearest neighbor
method)
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Results
A total of 622 patient records were collected. The mean
age of the patients was 3.09 & 14.08 years. Out of 32 fea-
tures in the collected data, 24 important features were
identified. 20 features had discrete values and 4 features
were continuous. Sternomental Distance was the most
important (0.10) among the features. Table 2 shows the
features with a discrete value, the importance, mean, and
standard deviation. Table 3 shows the continuous fea-
tures, their importance, and their classes.
Cormack-Lehane score was the target class. This clas-
sification system is based on the visualization of struc-
tures during laryngoscopy and is divided into four
grades: grade 1: Complete visualization of the laryngeal
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entrance, grade 2: Partial visualization of the posterior
aspect of the laryngeal entrance, grade 3: Only the epi-
glottis is visible, grade 4: No part of the epiglottis or lar-
ynx is visible. If Cormack-Lehane grade 3 is observed, it
indicates a difficult laryngoscopy (class 2). Otherwise, it
is labeled as Class 1. Class 1 included 531 patients and
class 2 included 91 patients. In this study, there were no
patients with grade 4.

Figures 2 and 3 illustrate scatter plots depicting the
relationships between two variables and their corre-
sponding class labels, both before and after data balanc-
ing. These scatter plots provide visual insights into the
distribution of data points and the potential existence of
class imbalances.
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To evaluate the data’s normality, Q-Q plots were
employed in addition to scatter plots. These charts pro-
vide a comparison between the observed data’s quantiles
and a theoretical normal distribution. The data points in
the Q-Q plots deviated from the expected diagonal line,
indicating deviations from normalcy prior to balancing.
On the other hand, the Q-Q plots improved once the
data was balanced, with the data points aligning closer to
the diagonal, indicating a more normal distribution of the
data. Because many machine learning models, including
some utilized in this study, perform better when the data
is closer to a normal distribution, this enhanced normal-
ity is significant.

The data balancing approach, as demonstrated by the
scatter plots and Q-Q plots, not only resolved the prob-
lem of class imbalance but also enhanced the dataset’s
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statistical qualities, which enabled the machine learning
models to produce predictions that were more precise
and trustworthy. Finally, the robustness of the study’s
conclusions was enhanced by these visual aids, which
offered important proof that the preprocessing proce-
dures were successful. Figures 4 and 5 present Q-Q plots
to assess the normality of the data both before and after
balancing.

Table 4 shows a comparative analysis of various
machine learning algorithms evaluated after applying two
data balancing techniques: SMOTE and the Under-sam-
pling Based on the Repeated Edited Nearest Neighbors
(RENN). The KNN algorithms with K=3 generally out-
performed those with K=5. Minkowski and Euclidean
metrics with K=3 yielded the highest accuracy (0.87).
SVM (POLY and RBF) achieved respectable accuracies

Q-Q Plot- thyromental
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Fig. 4 Normality of selected variables after balancing (under-sampling based on the repeated edited nearest neighbor method)
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of 0.82 and 0.80, respectively. The Decision Tree achieved
a moderate accuracy of 0.77. Random Forest had slightly
better accuracy when using Information Gain (0.76) than
the Gini index (0.74). Logistic Regression, with an accu-
racy of 0.71, demonstrated the weakest performance
compared to the other models.

Algorithms in the RENN method generally outper-
formed SMOTE across all metrics. When using the
SMOTE technique, only Random Forest was able to pro-
duce the same level of accuracy as RENN.

Figure 6 shows the ROC curves for different classi-
fication algorithms when the data has been balanced
using the Under-sampling Based on the RENN Method.
The best performance was achieved when the num-
ber of neighbors was optimally set to K=3 and the
Minkowski metric was used, which allowed greater
flexibility in calculating the distance. The SVM models
with RBF and Polynomial kernels showed acceptable
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performance and the Polynomial kernel was slightly
better. Moderate performance was seen by the Random
Forest (Information-Gain and Gini-Index). The Deci-
sion Tree, with an AUC of 0.77, outperformed Logistic
Regression but still demonstrated lower accuracy and
discriminative power compared to other models.

According to the findings presented in Table 4; Fig. 6,
the KNN algorithm with three neighbors and Euclid-
ean, Minkowski, and Cosine distance metrics outper-
formed the other algorithms.

Discussion

This study aims to determine how machine learning algo-
rithms can be used to predict outcomes in challenging
airway management, a critical area of anesthesia. Sev-
eral algorithms, including KNN, Random Forest, Logistic
Regression, and SVM were trained using data from 622
patient records gathered from two hospitals in Iran. 24
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Table 4 Performance of different classification algorithms after data balancing

Metric Balanced Data- Under sample based on the repeated

Balanced Data- SMOTE

edited nearest neighbor method

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Euclidean (K=5) 0.84 0.87 0.75 0.80 0.68 0.17 037 0.22
Manhattan (K=5) 0.80 0.83 0.71 0.76 0.67 0.17 0.39 0.23
Cosine (K=5) 0.80 0.86 0.67 0.76 0.66 0.17 0.38 022
Minkowski (K=5) 084 087 0.75 0.80 0.65 0.18 045 0.25
Euclidean (K=3) 0.87 0.88 0.82 0.85 0.73 0.13 0.16 0.13
Manhattan (K=3) 0.82 0.84 0.75 0.79 0.70 0.12 017 0.13
Cosine (K=3) 0.85 0.88 0.78 0.83 0.68 0.12 0.20 0.14
Minkowski (K=3) 0.87 0.88 0.82 0.85 0.67 0.12 0.20 0.14
Logistic Regression 0.71 0.70 0.60 0.65 0.66 0.17 040 0.23
Svm (RBF) 0.80 0.78 0.78 0.78 0.66 0.15 032 0.20
Svm (POLY) 0.82 0.84 0.75 0.79 0.66 0.16 035 021
Random Forest (INFOR-  0.76 0.78 0.64 0.70 0.76 0.13 0.14 0.12
MATION-GAIN)

Random Forest 0.74 0.77 0.60 0.68 0.73 0.07 0.16 0.10
(GINI-INDEX)

Decision Tree 0.77 0.79 0.67 0.73 0.65 0.15 0.33 0.21

significant features were found when the data was pre-
processed and balanced, with Sternomental Distance
being the most significant. The KNN method yielded
the best accuracy of 0.87, especially when Euclidean and
Minkowski metrics were used. These findings imply that
machine learning can dramatically improve prediction
accuracy in clinical settings, improving patient outcomes
and enhancing the efficacy of airway control techniques.
Zhou'’s research showed that machine learning mod-
els, particularly gradient boosting algorithms, were
very successful in predicting difficult airway intuba-
tions, which is similar to the current study. With an
AUC of more than 0.80 and a flawless precision score,
the Gradient Boosting Machine (GBM) proved to be
the most effective algorithm in their investigation [25].
The utilization of physical metrics like BMI and Sterno-
mental Distance and the excellent performance of ML
models like GBM were constant across both investiga-
tions, although KNN was not the best model in Zhou’s
investigation. Wang et al. showed that the performance
of machine learning algorithms, namely Naive Bayes
and Random Forest, was best for predicting difficult
tracheal intubation (DTI) and difficult laryngoscopy
(DL) with AUC values of 0.95 and 0.90 respectively.
Linear models such as Logistic Regression and Deci-
sion Tree are less accurate and sensitive to predicting
intubation difficulties than these models. The results
of the present study are consistent with these find-
ings, especially for the superior performance of com-
plex models over simpler ones [26]. Hayasaka et al.

found that Convolutional Neural Networks (CNN)
can predict intubation difficulty with high accuracy
(AUC =0.86) using facial images [27]. The closeness of
the AUC values between the CNN model and the KNN
model in this study indicates how machine learning
techniques can be applied broadly to a variety of meth-
ods, such as facial image analysis and measurements of
the neck circumference and mouth opening. Xia et al.
trained a neural network using facial images and the
Light Gradient Boosting Machine algorithm, achiev-
ing a commendable Area Under the Curve (AUC) of
0.77 for predicting intubation difficulty [28]. Although
this AUC was slightly lower than in the current study,
probably because the feature sets and models were dif-
ferent, it nevertheless shows how consistently machine
learning models outperform conventional techniques
in terms of prediction accuracy. Cuendet et al’s study,
utilizing Random Forest algorithms, yielded an AUC of
0.77, which while promising, was lower than the AUC
of the KNN model employed in the current study [29].
Nonetheless, to improve prediction accuracy, both
research stresses how crucial it is to combine various
features. Although the ensemble aspect of Random For-
est contributed to its good performance, KNN’s use
of distance-based metrics appeared to provide better
results in this instance.

In summary, machine learning techniques show
promising results for predicting difficult airway man-
agement. The choice of physical parameters used to
train the algorithm impacts the accuracy of these
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Fig. 6 ROC curves of different classification algorithms after balancing (under-sampling based on the repeated edited nearest neighbor method)

algorithms. With the right choice of parameters,
machine learning algorithms can significantly impact
clinical practice by improving the prediction of difficult
airways, which can also lead to better patient outcomes.

Limitations and future research directions

Using only one type of anesthesia technique makes the
results non-generalizable to other anesthesia meth-
ods. The model could become more accurate in many
situations if we consider other more diverse techniques.

Furthermore, cases of emergency surgery were not
included in this study. However, this may limit the mod-
el’s applicability in emergencies since emergencies need
faster diagnoses and better models. Variables used may
not always be available in clinical settings or may not be
easy to measure. Such a limitation would restrict the use
of the model in general environments or emergencies.
The exclusion of patients of different age groups (children
or elderly) may make the findings unreliable for some age
groups (e.g. children, elderly). The different physiological
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characteristics in these groups may require specific algo-
rithms. Given that the data was collected by two special-
ists, there is a potential for human error, which could
affect the accuracy of the data and, ultimately, the mod-
el’s accuracy. It is recommended that in future research,
additional features, including physiological and biologi-
cal characteristics (such as cardiovascular or respiratory
health status), be added to the model. This could enhance
prediction accuracy in various clinical conditions.

Incorporating imaging data, such as radiology
images or CT scans of the airway, could assist machine
vision algorithms in providing more accurate predic-
tions in more complex conditions.

Examining the impact of specific characteristics of
different age groups (children, elderly) or particular
medical conditions (such as patients with chronic res-
piratory diseases) could help improve the model’s per-
formance in special conditions. Using deep learning
algorithms and more complex neural networks could
help better simulate complex airway patterns and
improve prediction accuracy.

Conclusions

These studies show that machine learning, particularly
KNN models, can provide accurate predictions in clini-
cal contexts, assisting anesthesiologists in anticipating
and better managing problematic airways. These algo-
rithms are useful tools for enhancing patient outcomes
and safety because of their capacity to examine several
complex variables at once. The study concludes that
machine learning has a lot of promise to improve pre-
operative planning by helping doctors identify patients
who are more likely to experience difficulties in the air-
way and, as a result, reduce unfavorable outcomes fol-
lowing surgery. Applying such predictive models may
result in more accurate and customized airway man-
agement techniques in practice, which would eventu-
ally lower the risk of problems and raise the standard of
anesthesiology treatment as a whole.
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