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Abstract

Background In clinical practice, family medication history is not routinely assessed as part of a patient’s family health
history (FHH). The information is self-reported and can depend on the individual's subjective perception. To illustrate
how pharmacogenetic (PGx) testing results could be used to validate self-reported family medication history on
drug-related problems (DRP), as well as to inform medication-related decisions, we herein present a case involving ten
members of the same family.

Case Presentation Prior to a planned surgery, a preemptive PGx panel test was performed for a nine-year-old girl
due to self-reported family medication history. The PGx panel test was also performed for her three siblings, parents,
and grandparents. The focus was directed to the paternal grandmother, as she reported DRP from the hypnotic agent
propofol, and to the maternal grandmother, as she described DRP after the administration of codeine and tramadol.
A commercial PGx panel test of 100 variations in 30 different genes was conducted and analyzed focusing on
genetic variants in cytochrome P450 enzyme 2B6 (CYP2B6), and CYP2D6 as they are involved in the biotransformation
of propofol and the bioactivation of codeine and tramadol, respectively. The girl was identified as (1) CYP2B6
intermediate metabolizer (IM) with reduced enzyme activity and (2) CYP2D6 poor metabolizer (PM) with no enzyme
activity. Regarding the planned surgery, it was recommended (1) to carefully titrate propofol dosage with increased
monitoring of potential DRP and (2) to avoid opioids whose activation is mediated by CYP2D6 (e.g. codeine and
tramadol). Further PGx testing revealed (1) the paternal grandmother as CYP2B6 normal metabolizer (NM) and (2) the
maternal grandmother as CYP2D6 NM.

Conclusion The original trigger for PGx testing was the self-reported, conspicuous family medication history of
DRP reported by the grandmothers. However, the girl’s genotype predicted phenotypes of CYP286 IM and CYP2D6
PM, differed from the grandmothers. With this exemplary case, we propose that hereditary concerns based on
self-reported information on DRP should be verified by a PGx panel test, when the respective drug exhibits a

PGx association. Also, the girl’s PGx testing results provided important medication recommendations, which

were considered perioperatively by the anesthetist suggesting to use PGx testing results preemptively to inform
medication-related decisions.
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Background

The assessment of a patient’s family health history (FHH)
can comprise different components depending on the
purpose of collection and is an integral element of clini-
cal practice. A differentiation can be made between fam-
ily medical history and family medication history. Up
to now, FHH predominately comprises the collection
of medical information for health-risk evaluations and
prediction of familial-related diseases (e.g. hereditary
cancer susceptibility) [1-4]. The assessment of family
medication history is, however underutilized, although
one should not strictly distinguish between medical his-
tory and medication history, as these interdepend [5, 6].
Genes and therefore inherited information can determine
both, disease risk and changes in drug metabolism [7-9].
Accordingly, the information on drug-related problems
(DRP) in the family, i.e. therapy failure (TF) or adverse
drug reaction (ADR), could support therapy decisions by
physicians and pharmacists [10].

In anesthesiology, FHH is of great importance compris-
ing both family medical and medication history. In the
preoperative assessment and patient preparation, FHH
is collected in a standardized way to assess the risk of
malignant hyperthermia, bleeding tendency, and DRP.
The overall objective is to ensure safe and effective peri-
operative anesthesia and analgesia [11-14]. Though, fam-
ily medication history has one major constraint, since it is
mostly self-reported and cannot be validated. Especially
if the information is communicated orally by third par-
ties (e.g. family members without written records), incor-
rect or incomplete information might result [15-18].
This potential information bias represents a challenge in
clinical practice, as it is not evident if and how to con-
sider self-reported information in therapy decisions [19].
Moreover, there are no guidelines on how to consider
family medication history in pharmacotherapy so far.

Verification of a self-reported suspicion of a DRP could
involve a pharmacogenetic (PGx) test. PGx is an area of
personalized medicine that aims to tailor drug therapy
to individual patients. PGx testing can target inherited
genetic variations associated with alterations in the phar-
macokinetic (PK) and pharmacodynamic (PD) behavior
of certain drugs [20]. Hitherto, the effects of genetic vari-
ability on the PK and the PD of drugs for several indica-
tions have been reported [21].

The most important enzyme system for phase I
metabolism is the cytochrome P450 (CYP) superfam-
ily. Genetic polymorphisms in genes coding for specific
CYP enzymes are associated with changes in drug dis-
position and even therapy outcomes (ADR/TF).*? As an
illustration, for several drugs, the highly polymorphic

cytochrome P450 enzyme 2D6 (CYP2D6) is of great
therapeutic relevance. CYP2D6 bioactivates certain opi-
oids like tramadol and codeine catalyzing the formation
of their analgesically active metabolites (O-desmethyltra-
madol and morphine), which exhibit an approximately
30-fold higher affinity for particular opioid receptors than
the parent molecules [22]. Different alleles of CYP2D6
translate into altered enzyme activity, that can be classi-
fied into four major phenotypes [23]. An individual with
normal enzyme activity (normal function alleles) is called
a normal metabolizer (NM); an increased enzyme activity
(duplicated or multiduplicated normal function alleles)
results in an ultrarapid metabolizer (UM); a decreased
enzyme activity (normal function allele+decreased func-
tion allele or loss-of-function allele) predicts an inter-
mediate metabolizer (IM); and low to nearly no enzyme
activity (decreased function or loss-of-function alleles)
is found in a poor metabolizer (PM) [24, 25]. For opioids
like tramadol and codeine, the UM phenotype can lead
to higher plasma concentration of the active metabolite,
resulting in a rapid onset of drug effect with the risk of
ADR, whereas a PM could suffer from insufficient anal-
gesia (TF) due to limited bioactivation [26]. In general,
PGx variability concerning opioids is well-documented
and there are dosing guidelines from the Clinical Phar-
macogenetics Implementation Consortium (CPIC) and
the Dutch Pharmacogenetics Working Group (DPWG)
[27, 28].

For intravenous anesthetics, no PGx dosing recom-
mendations exist because of limited evidence. Though,
there is evidence for drug-gene-interactions influencing
the metabolism of propofol, which is the most commonly
used short-acting anesthetic for intravenous adminis-
tration [29]. Indeed, a high interindividual variability in
drug response has been observed and it is known that
propofol is extensively metabolized by CYP enzymes
[30, 31]. Hereby, CYP2B6 catalyzes the hydroxylation of
propofol to 4-hydroxypropofol in humans and therefore
significantly contributes to the detoxification of propofol
[32, 33]. Thus, genetic variation affecting CYP2B6 activ-
ity might influence the PK behavior of propofol [34]. A
special focus is directed to the single nucleotide poly-
morphism (SNP) rs3745274 in CYP2B6. Multiple studies
associated this SNP with a decrease in biotransforma-
tion rate and higher plasma concentrations of propofol,
which could then influence clinical outcomes [35-38]. As
a potential consequence ADRs (e.g. prolonged sedation,
bradycardia, hypotension) might be observed.

However, not only variations in genes coding for phase
I enzymes (e.g. CYP2D6, CYP2B6), but also for phase II
enzymes (e.g. catechol-O-methyltransferase (COMT)),
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receptors (e.g. opioid receptor pl (OPRM1)) or trans-
porters (e.g. ATP binding cassette subfamily B member
1 (ABCBL1)) were reported in single studies to alter drug
response and may therefore be considered in a PGx panel
test approach [39, 40].

Taken together, a PGx panel test could be used to vali-
date DRP in family histories to further inform and sup-
port clinical decision-making. To illustrate how PGx
testing results are interpreted in the context of a self-
reported family medication history and are adopted in an
interprofessional healthcare setting, we present an exem-
plary case series.

Family case series presentation

A PGx panel test was conducted for three genera-
tions of a family, including a nine-year-old girl and her
first-degree relatives (three siblings, and parents) and
second-degree relatives (maternal and paternal grand-
parents). All participants or parents as legal representa-
tives for their children gave written informed consent for
PGx testing and health data retrieval. The adults were
additionally part of an observational case series study
approved by the local ethics committee (ClinicalTrials.
gov identifier: NCT04154553).

PGx panel test was conducted with a buccal swab sam-
ple by the commercial provider Stratipharm® by humatrix
AG (Pfungstadt, Germany). Polymerase chain reaction
(PCR) is applied using Life Technologies QuantStudio
12k flex (Thermo Fisher, MA, USA) with the respec-
tive optimized and commercially available chemistry.
The panel test includes 100 polymorphisms in 30 genes
and an assessment of CYP2D6 Copy Number Variations
(CNV) using probes in exon 9 and intron 6, respectively.

Pharmacogenotyping of the girl

The case started with a preemptive PGx panel test for the
girl. She suffered from a painful cartilaginous exostosis
extending from the medial distal femoral metaphysis and
therefore had to undergo elective surgery for removal. In
advance of the surgery, her mother contacted the phar-
macy for a preemptive PGx panel test, because she was

Table 1 Selected results of girl's pharmacogenotyping
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concerned due to their family medication history. In the
past, the paternal grandmother underwent hip arthro-
plasty under anesthesia with propofol and reported
postoperative ADR including prolonged sedation and
a decrease of vital parameters, especially hypotension.
Additionally, the maternal grandmother self-reported
TF after intake of codeine and tramadol in the context of
surgeries due to breast cancer.

At the time of PGx testing, the girl did not have other
diseases or co-medication. Therefore, the focus of pre-
emptive PGx testing was directed to the determina-
tion of genetic variation in CYP2B6 and CYP2D6. Also,
ABCBI1, COMT, and OPRM1 were considered, as they
are reported to potentially impact the response to anes-
thetics and analgesics [28, 41, 42].

Interpretation of the genotype predicted the girl’s
phenotype as CYP2D6 PM (homozygous *4 allele car-
rier). For CYP2B6, the girl's phenotype was predicted
as IM (*2/*6 or *2/*7 allele carrier) as she was heterozy-
gote for the SNP rs3745274, which resides on star allele
6, as well as *7 allele, however, both are attributed with
decreased function [43, 44]. In addition, the girl exhibited
a heterozygosity for rs1128503 in ABCBI. For rs4680 and
rs1799971 in the COMT and OPRM], respectively no
variation was detected. The selected PGx results are sum-
marized in Table 1.

Pharmacogenotyping of the family

The girl exhibited relevant genetic variation, which suited
to the self-reported medication history and the sus-
pected drug-gene-interaction (DGI) of the grandmothers
(paternal grandmother: propofol and CYP2B6; maternal
grandmother: codeine/ tramadol and CYP2D6). There-
fore, the same PGx panel test was conducted reactively
for the grandmothers. The test identified the paternal
grandmother as CYP2B6 NM (homozygous *1 allele
carrier) and the maternal grandmother as CYP2D6 NM
(homozygous *1 allele carrier). For the reconstruction of
the inheritance of the girl’s genetic variations, PGx panel
test was then also conducted for further family members.

Gene Variant Genotype Diplotype Predicted phenotype

ABCB1 151128503 ¢.1236 T>C T/C NA substance specific function

coOMT rs4680 c472 G>A G/G NA substance specific function

CYP2B6 1s8192709 c.64 C>T /T *2/ decreased function (IM)
153745274 c516 G>T G/T *6 or *7

CYP2D6 11065852 c.100 C>T /T *4/ no function (PM)
rs3892097 c.506-1 G>A A/A *4

OPRM1 11799971 118 A>G A/A NA substance specific function

Abbreviation: IM: Intermediate metabolizer; NA: Not applicable; PM: Poor metabolizer. Note: For the assessment of the respective predicted phenotype, it is
necessary to know that no genetic variation was detected in CYP286 rs28399499 (functional star alleles *18) and CYP2D6 rs35742686, rs5030655, rs5030867, rs5030865,
rs5030656, rs201377835, rs28371706, rs59421388, rs28371725 (functional star alleles *3, *5, *6, *7, *8, *9, *10, *14, *17, *29, *41, *114). CNV in exon 9 and intron 6 were

also tested
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Fig. 1 Family’s pedigree of the inheritance of CYP2B86 and CYP2D6.Note: For CYP2B6, the girl's father was identified as heterozygous *2 allele carrier (NM),
inherited from the paternal grandfather. The girl's mother was identified as heterozygous *6 or *7 allele carriers (IM), which originated from the maternal
grandmother. The firstborn sibling got both normal function alleles from his parents resulting in a homozygous *1 allele carrier (NM). The other two sib-
lings were identified as *2/*6 or *2/*7 allele carriers (IM). For CYP2D6, the girl's parents were identified as heterozygous *4 allele carriers (IM) with the loss-
of-function alleles originating from both grandfathers. Again, the firstborn sibling was identified as a homozygous *1 allele carrier (NM). The other siblings
got one loss-of-function allele and one normal function allele resulting in heterozygous *4 allele carriers (IM), similar to the parents. Abbreviations: DRP:
Drug-related problem; IM: Intermediate metabolizer; NM: Normal metabolizer; PM: Poor metabolizer

The family’s pedigrees of the inheritance of CYP2B6 and
CYP2D6 are illustrated in Fig. 1.

Further selected PGx results of the family regard-
ing genes potentially contributing to the metabolism
of selected analgesics and opioids (ABCB1, COMT,
CYP2C8, CYP2C9, CYP2C19, CYP3A4, CYP3AS5, NAT-2,
OPRM1) are summarized in Additional File 1.

Discussion

Interpretation of the girl's PGx results in regard to the
surgery

The decisive factor for the girl's preemptive PGx test
was the family medication history concerning DRP with
propofol, codeine, and tramadol. Propofol is the most
commonly used hypnotic agent for anesthesia, and the
opioids codeine and tramadol are frequently used for
perioperative pain management in adults and children
over 12 years [45—-47]. Moreover, all substances exhibit a
PGx association (www.pharmgkb.org). For codeine and
tramadol, there are even existing dosing recommenda-
tions based on genetic variation in CYP2D6 [27, 28].
Thus, the involved pharmacist supported the mother’s
request to conduct a preemptive PGx test for the girl pro-
vided recommendations for safe and effective periopera-
tive medication.

The girl’s heterozygous variation in CYP2B6 polymor-
phism rs3745274 is expected to lead to higher plasma
concentrations of propofol due to a decreased biotrans-
formation [35—37]. Thus, ADRs (e.g. prolonged sedation,
hypotension) could possibly result. Moreover, a hetero-
zygous variation in the ABCBI polymorphism rs1128503
was detected. ABCBI encodes the transmembrane p-gly-
coprotein (p-gp), which serves as an efflux transporter
for numerous xenobiotics, including drugs (e.g. propo-
fol) [48]. SNPs in ABCBI might therefore contribute to
an interindividual drug response [49]. There is a study
suggesting that children who are homozygote carriers
of ABCBI polymorphism rs1128503 show an increased
response to propofol and remifentanil [41]. However, this
refers to a single study and has therefore a low level of
evidence [50]. Also, it is unclear whether it is of relevance
for children exhibiting heterozygosity for rs1128503.

In general, there are no clinical guidelines on how to
consider genetic variations for intravenously adminis-
tered anesthesia. In addition to ABCBI, also the study
associations between propofol and CYP2B6 are still lim-
ited (PharmGKB: Level 3) [50]. PharmGKB categorizes

variant-drug combinations into levels of evidence rang-
ing from 1 A (high evidence) to 4 (unsupported), with
the CYP2B6-propofol combination on level 3 represent-
ing a low evidence which is based on single studies. At
this point it is also important to mention, that propofol is
the first-line anesthetic for intravenous administration in
children and adults and has a high safety profile [51, 52].
Thus, we did not recommend switching to another anes-
thetic but rather using propofol with an increased aware-
ness of potential ADRs and tight monitoring of dosage
escalation.

Accordingly, the anesthetist decided to adminis-
ter alfentanil (15 pg/kg) and propofol (3 mg/kg) for the
induction of her anesthesia. Since no variation in OPRM 1
(rs1799971) was detected, no altered response to Alfen-
tanil was expected. In a single study, the exhibited het-
erozygosity in ABCBI (rs1128503) was associated with
an increased likelihood of ADR, as well as TF to sevoflu-
ran [53]. Still, anesthesia maintenance was managed with
nitrous oxide and sevoflurane. Normally, the anesthetist
would have preferred total intravenous anesthesia (TIVA)
with propofol and remifentanil for maintenance of anes-
thesia in this age group, but decided to further limit pro-
pofol administration, because of the known CYP2B6 IM
status. At the end of the girl’s surgery, propofol was once
again administered (0.7 mg/kg) to ensure asleep extuba-
tion. According to the physician’s anesthesia protocol, the
awakening behavior was adequate. About one hour after
the end of the surgery, the girl was already drinking. Vital
parameters were perioperatively within normal range
and did not indicate any exceptional alterations in drug
response.

In addition, the girl was identified as CYP2D6 homozy-
gous *4 allele carrier (PM) with low to no enzyme activity
at all, which is an important information for periopera-
tive pain management. Codeine and tramadol are both
bioactivated by CYP2D6. For CYP2D6 PV, it is expected
that the bioactivation is strongly decreased and pain relief
is limited [54, 55]. For this phenotype, the CPIC, as well
as the DPWG guideline, recommend avoiding codeine
and tramadol and switching to another opioid or a non-
opioid analgesic, which is not metabolized by CYP2D6
[27, 28, 56]. Again, this information was considered
perioperatively. In detail, it was decided to administer
nalbuphine as the main opioid during surgery. After the
surgery, analgesia was managed with paracetamol and
ibuprofen, which were not affected by any of the known
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PGx variability according to her testing results (for ibu-
profen: CYP2C8 and CYP2C9 NM, see Additional File 1).

Validation of self-reported family medication history

Since genetic variations can be inherited and the girl’s
genetic profile suited to the observed DRP of the grand-
mothers, we presumed similar PGx results for them.
However, the respective PGx profile did not match our
expectations. The paternal grandmother was identi-
fied as CYP2B6 NM. Consequently, it was not possible
to confirm the suspected DGI between propofol and
CYP2B6. Also, the maternal grandmother was identi-
fied as CYP2D6 NM, so again we could not confirm the
suspected DGI between CYP2D6 and codeine/tramadol.
Here, it is important to note that the self-reported DRP
of the grandmothers might not be incorrect information,
it was just not possible to associate the DRP with one of
the tested genetic variations of the used panel test. There
are other possible genetic markers, that were not part of
the selected panel test (e.g. UGT1A9, SLC22A1), which is
a limitation. Single variants of these genetic markers have
been associated with a risk of propofol and tramadol tox-
icities, however, only based on limited evidence (Phar-
mGKB: Level 3). The used panel test follows a targeted
approach, since the selected gene variants are based on
current recommendations and guidelines. This is also
important as in Switzerland it is not allowed to provide
excess information from PGx tests, e.g. disease risks,
which are more likely to be detected using a less targeted
approach like next generation sequencing (NGS).

Besides genetics, it is known, that several other fac-
tors can influence drug response, e.g. demographics,
comorbidities, organ function, and drug-drug-interac-
tion (DDI) [57, 58]. Likewise, self-reported information
can be affected by various factors, e.g. unawareness, bad
recall, psychological factors, and subjective perception of
health-related events [59-65].

After PGx testing of further family members, it was
possible to reconstruct the inheritance of the girl’s
genetic variations. For CYP2D6, both of her loss-of-
function alleles (*4/*4) originated from the paternal and
maternal grandfather (see Fig. 1). For CYP2B6, the *2
haplotype was inherited by the paternal grandfather, and
the *6 or *7 haplotype by the maternal grandmother (see
Fig. 1).

As summarized in Additional File 1, it was also pos-
sible to detect further genetic variations in the fam-
ily (e.g. CYP2C9 PM status of the paternal grandfather,
CYP2C19 IM status of all children), which should be
considered for future pharmacotherapies. It should also
be mentioned that both grandfathers already had surgical
interventions with applied anesthetics and analgesics and
did not report any DRP. Here, we want to emphasize that
women experience in general more ADR than men [66,
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67]. Additionally, pain perception also differs with gender
(68, 69].

Based on this exemplary family case, we propose that
family medication history and associated DRP should be
collected as part of patients’ FHH, not only by pharma-
cists, but also by physicians. Self-reported family medi-
cation histories concerning DRP with PGx associated
drugs could be verified by a PGx test. In this case series,
the PGx test was used as a validation for the family medi-
cation history and to inform medication decisions for
the girl’s perioperative management. For opioids, there
are already existing clinical guidelines [27, 28], which
facilitate PGx-based therapy decisions for healthcare
professionals (HCP). The same applies to non-steroidal
anti-inflammatory drugs (NSAID e.g. ibuprofen) [70],
also used for postoperative pain management. For anes-
thetics, the evidence concerning PGx is limited. There is
a CPIC guideline that provides therapeutic recommenda-
tions for potent volatile anesthetics and succinylcholine
used in patients with variations in the ryanodine receptor
1 (RYRI) or the calcium voltage-gated channel subunit
alpha 1 S (CACNALIS), which might affect susceptibility
for the development of life-threatening malignant hyper-
thermia. Besides this exception, there are no clinical PGx
guidelines for anesthetic agents. However, PGx testing
results regarding anesthetics can also be used as an alert
that potential DRP might occur with the clinical conse-
quence of increased awareness and tight monitoring.

Conclusion

With this family case report, we firstly want to demon-
strate that information on family medication history is
important to collect, still, it should be verified. Concern-
ing the involvement of PGx associated drugs, PGx panel
testing can be used to verify that information by deter-
mining the hereditable component of DRP. However, the
decision to apply a PGx panel test should be done on a
person-by-person evaluation and should not be pre-
cluded given the opposite scenario (i.e. negative family
medication history).

Secondly, PGx panel testing results can be useful to
inform medication-related decisions preemptively, again,
if the respective drug is PGx associated.

To conclude, we want to encourage HCPs to integrate
verified information on family medication history into
patients’” FHH and to combine the information compli-
mentary with a PGx panel test where applicable and use-
ful. Both might contribute to improve medication safety
and efficacy in clinical practice.
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ABCB1 ATP binding cassette subfamily B member 1
CACNA1S Calcium voltage-gated channel subunit alpha 1S
COMT Catechol-O-methyltransferase



Bollinger et al. BMC Anesthesiology (2024) 24:416

CYP2A7P1 Cytochrome P450 Family 2 Subfamily A Member 7
Pseudogenel

CPIC Clinical Pharmacogenetics Implementation Consortium

CNV Copy Number Variation

DDI Drug-drug-interaction
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DPWG Dutch Pharmacogenetics Working Group
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NGS Next generation sequencing
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