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Abstract
Background Potassium channels (KCa3.1; Kv1.3; Kir2.1) are necessary for microglial activation, a pivotal requirement 
for the development of Perioperative Neurocognitive Disorders (PNDs). We previously reported on the role of 
microglial Kv1.3 for PNDs; the present study sought to determine whether inhibiting KCa3.1 channel activity affects 
neuroinflammation and prevents development of PND.

Methods Mice (wild-type [WT] and KCa3.1−/−) underwent aseptic tibial fracture trauma under isoflurane anesthesia 
or received anesthesia alone. WT mice received either TRAM34 (a specific KCa3.1 channel inhibitor) dissolved in its 
vehicle (miglyol) or miglyol alone. Spatial memory was assessed in the Y-maze paradigm 6 h post-surgery/anesthesia. 
Circulating interleukin-6 (IL-6) and high mobility group box-1 protein (HMGB1) were assessed by ELISA, and microglial 
activitation Iba-1 staining.

Results In WT mice surgery induced significant cognitive decline in the Y-maze test, p = 0.019), microgliosis 
(p = 0.001), and increases in plasma IL-6 (p = 0.002) and HMGB1 (p = 0.001) when compared to anesthesia alone. 
TRAM34 administration attenuated the surgery-induced changes in cognition, microglial activation, and HMGB1 but 
not circulating IL-6 levels. In KCa3.1−/− mice surgery neither affected cognition nor microgliosis, although circulating 
IL-6 levels did increase (p < 0.001).

Conclusion Similar to our earlier report with Kv1.3, perioperative microglial KCa3.1 blockade decreases immediate 
perioperative cognitive changes, microgliosis as well as the peripheral trauma marker HMGB1 although surgery-
induced IL-6 elevation was unchanged. Future research should address whether a synergistic interaction exists 
between blockade of Kv1.3 and KCa3.1 for preventing PNDs.
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Background
Perioperative neurocognitive disorder (PND), first 
described in 1887, [1] is a frequent misdiagnosed compli-
cation [2–4]. While several etiological factors have been 
investigated [5–7], the most plausible explanation impli-
cates trauma-induced inflammation for the development 
of PND [8–10].

During surgical incision, traumatized tissues release 
high mobility group box protein1 (HMGB1) into the 
bloodstream [8]. This damage-associated molecular pat-
tern binds to pattern recognition receptors on circulat-
ing, CCR2+ bone marrow-derived monocytes (BM-DMs), 
triggering the nuclear translocation of the transcrip-
tion factor NF-kB which activates gene expression and 
release of pro-inflammatory cytokines including IL-6 
and IL-1β [8] and leads to blood-brain barrier disrup-
tion [9]. Within the brain parenchyma, the chemokine 
MCP-1 (also referred to as CCL2) is upregulated and, by 
signaling through its receptor, attracts CCR2+ BM-DMs 
[10]; the resulting influx of BM-DMs into brain activates 
quiescent microglia. Together, BM-DMs and activated 
microglia release HMGB1, IL-6, and IL-1β, thereby dis-
rupting long-term potentiation and the synaptic plastic-
ity involved in the cognitive functions of learning and 
memory [11–13]. Exaggerated or unresolved inflamma-
tion promotes the development of PND [4, 14–16].

Among strategies that have been investigated to miti-
gate the development of PND, preventing the activa-
tion of microglia may be one of the most promising. 
Microglia surveil the milieu and are activated by changes 
in its environment. When differentiated into the pro-
inflammatory (“M1”) phenotype, the activated microg-
lia synthesize and release cytokines that propagate the 
inflammatory process; conversely, when transformed into 
the anti-inflammatory phenotype (“M2”) microglia sup-
port regeneration. M1 microglia play an active role in the 
development of PNDs following peripheral surgery [10].

Microglia express multiple potassium (K+) channels 
(KCa3.1; Kv1.3; Kir2.1), which are up-regulated during 
activation and participate in microglial calcium signal-
ing and neuroinflammation [17]. We previously reported 
that Kv1.3 channel blockade mitigated PND development 
[18]. KCa3.1 is a voltage-independent, homo-tetrameric 
potassium channel which is constitutively associated 
with its calcium sensor calmodulin and therefore opens 
in response to increased intracellular calcium (above 
~ 150 nM). In turn, a negative membrane potential is 
maintained through K+ efflux [17, 19]. The channel is 
expressed on proliferating fibroblasts, on dedifferenti-
ated vascular smooth muscle cells, and on immune cells 
including microglia and macrophages, activated CCR7+ 
T cells and IgD+ B cells [17, 19].

In microglia, KCa3.1 has been shown to be involved in 
respiratory bursting, migration, proliferation, and nitric 

oxide production, as well neuroapoptosis in organotypic 
hippocampal slices, suggesting that KCa3.1 suppres-
sion may be useful for in neurological diseases featuring 
microglial activation [19–21]. TRAM34, a small molecule 
inhibitor, blocks the KCa3.1 channel with an IC50 of 20 
nmol/L and exhibits 200- to 1,500-fold selectivity over 
other K+ channels [19].

The present study investigated whether blockade of 
microglial KCa3.1 channel activity impacts the trauma-
induced inflammatory cascade and protect against the 
development of PND.

Methods
Animal care
Experimental procedures involving animals were 
approved by the Animal Care Committee of the Univer-
sité Libre de Bruxelles. (CEBEA-IBMM 2019-24-105).

Twelve weeks old C57BL/6J mice (Charles River Lab-
oratories, France) and KCa3.1−/− mice (genetic back-
ground: C57BL/6J; Mouse Biology Program UC Davis) 
[20] were separately group-housed with 12  h light/dark 
cycles in a temperature-controlled environment with 
ad libitum access to standard rodent chow and water in 
our animal research facilities during one week prior to 
experiments.

Experimental groups
12-week-old wild type mice were randomly assigned to 
surgery (anesthesia followed by surgery) or anesthesia 
alone groups that either received vehicle or TRAM34 (T) 
treatment:

Group 1: Anesthesia (+ vehicle).
Group 2: Surgery (+ vehicle).
Group 3: Anesthesia + T(TRAM34).
Group 4: Surgery + T(TRAM34).

12 weeks-old KCa3.1−/− mice were randomized to sur-
gery (anesthesia followed by surgery) or anesthesia alone 
groups:

Group 1: Anesthesia (without vehicle or TRAM34).
Group 2: Surgery (without vehicle or TRAM34).

In all experiments, 8 to 10 mice were included per group.
Experiments were conducted in the same animal sur-

gery room in the morning. (Fig. 1)

Anesthesia
Mice randomized to ‘anesthesia groups’ were subjected 
to inhalation anesthesia (3% isoflurane in 30% FiO2) as 
well as subcutaneous buprenorphine (0.1 mg/kg).
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Surgical procedure
Under general anesthesia with 3% isoflurane in 30% FiO2, 
rodents underwent an open tibial fracture of the left hind 
paw with intramedullary fixation under aseptic condi-
tions. Briefly, buprenorphine (0.1  mg/kg) was injected 
subcutaneously to provide analgesia after the induc-
tion of anesthesia and before skin incision. A 20 G pin 
was then inserted in the intramedullary canal of the left 
tibia, and osteotomy was performed after the periosteum 
was stripped. During the surgical procedure that lasted 
approximately 10  min, temperature was monitored and 
maintained at 37 °C with the aid of warming pads [8, 13].

Intra-peritoneal injections
TRAM34 and its vehicle miglyol were provided by the 
Department of Pharmacology, University of California 
Davis, Davis, CA, USA (Prof. Heike Wulff).

TRAM34 was synthesized as previously described 
[19] and was dissolved at a concentration of 8 mg/ml in 
miglyol 812 neutral oil (Neobee M5®; Spectrum Chemi-
cals), a low viscosity vehicle that is used as a pharmaceu-
tical excipient and well tolerated following i.p., s.c. or oral 
administration.

TRAM34, 40  mg/kg or miglyol alone were injected 
intraperitoneally approximately 1 min before surgery.

Other reagents are detailed in the respective method-
ological subsections.

Assessment of cognitive score by the Y-maze test
“Y-maze test evaluates the mice’s willingness to explore 
new environments. Rodents typically prefer to investigate 
a new arm of the maze rather than returning to one that 
was previously visited. Many parts of the brain, including 
the hippocampus are involved in this spatial memory test 
[22].

Mice were not trained before experiments. Six hours 
after surgery, mice were individually placed in the mid-
dle of a Y designed maze (each arm designated A/B/C) 
(Fig.  1C) and their movement was recorded for 5  min 
with a camera (Sony DSC-HX50). After 5 min, mice were 
taken out of the Y-maze and sacrificed. The Y maze was 
devoid of food and was thoroughly cleaned with ethanol 
after each recording. The following parameters from the 
recording were manually obtained and blindly analyzed 
by an independent researcher: total distance traveled in 
the maze, total number of arm entries, number of entries 

Fig. 1 Timeline of experiments performed in WT mice. A. Timeline of the experiments to measure cognitive outcome. B. Timeline of the experiments to 
measure peripheral and hippocampal parameters. Tibia fracture was applied after anesthesia to the surgery groups. C. Illustration of the 3-armed Y-maze 
device. Each arm had the following dimensions: 35 × 6 cm; wall height: 15 cm. Angles between arms were 120 °. Each mouse was placed in the middle 
of the Y-maze (as indicated on the image)
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made into each arm, and the sequential list of arms 
entered to assess number of alternations made.

In this study, cognitive score refers to the number of 
alternations in the Y-maze test.

A significant decrease in alternations is a sign of a cog-
nitive deficit [22].”

Hippocampal microglial presence
After the behavioral assessment was completed, mice 
were sacrificed and tissue samples collected as previously 
described [17].

To analyze microglial proliferation, hippocampus 
was harvested and fixed in 4% formaldehyde (Klinpath, 
Duiven, Netherlands) and embedded in paraffin. Three 
µm-thick biopsy slices were cut with a microtome Leica 
RM2255 (Wetzlar, Germany) and mounted on micro-
scope slides. Deparaffinised tissue sections were pre-
treated with hot citrate buffer pH6 and endoperoxydases 
were inactivated by a methanol/H2O2 treatment. After 
blocking (ScyTek Laboratories, UT, USA), hippocampal 
sections were incubated for 30 min at room temperature 
with a specific primary antibody (Anti-Iba1 antibody 
[EPR16588], Abcam, Cambridge, UK) at a 1:500 dilu-
tion. Signal amplification was performed by incubation 
with the complex UltrasenseStreptavidinePeroxydase 
RTU (ScyTek Laboratories, UT, USA). Revelation was 
performed with diaminobenzidine (DAB) (Biogenex, CA, 
USA). Slides were counterstained with hematoxylin (Cell 
Signaling, MA, USA). Five fields of each stained slide 
were acquired with 20x objective. The area percentage of 
Iba1 staining was obtained by colour deconvolution with 
Image J (NIH, Md, USA).

Systemic inflammatory response
At the time of sacrifice, blood was harvested in heparin-
coated syringes from the inferior vena cava of wild-type 
mice under terminal isoflurane anesthesia. Plasma was 
collected after centrifugation of the blood at 10,000 x g 
for 10 min at room temperature and stored at -80 °C for 
later analysis. Plasma IL-6 and HMGB1 concentrations 
were measured using the IL-6 ELISA kit from Millipore 
corporation (MO, USA) and mouse HMGB-1 Elisa kit 
(Novus Biologicals (Biotechne, MN, USA), respectively. 
Plasma samples were diluted twice with the Sample Dilu-
ent Buffer of the kit. The standard curve and samples 
were performed in duplicates. The absorbance was read 
at 450 nm with an Emax Plus Microplate Reader (Molec-
ular Devices, CA, USA). The standard curve and the sam-
ples were performed in duplicates and the absorbance 
was read at 450 nm.

Statistics
Analysis for normality revealed a non-parametric dis-
tribution and the data are displayed graphically with 

boxplots based on the calculation of the median (P50) 
and the interquartile range (IQR: P25–P75). Anesthe-
sia and surgery experimental groups were compared by 
the Kruskal-Wallis test. The p-value was obtained by the 
non-parametric Wilcoxon Rank Sum Test. The results 
were considered as significant below the 5% critical level 
(p < 0.05). Calculations were carried out by Sigma Plot 
version 12.0 (Systat Software, Chicago, IL).

Results
In wild-type (WT) mice, in the absence of TRAM34 
administration, surgery was associated with a decrease 
in cognitive score (alternations in Y-maze), suggesting 
the presence of cognitive decline 6  h post-operatively 
(P = 0.019).

In parallel, surgery also induced an increase in plasma 
IL-6 (P = 0.002), HMGB1 (P = 0.001), and microgliosis 
(P = 0.001) when compared to anesthesia alone (Fig. 2 and 
S1; Fig. 3).

Taken together, these results confirm the surgery-
induced deleterious cognitive and neuroinflammatory 
effects observed in previous experimental settings [13, 
17].

Based on these results, we then analyzed whether phar-
macological inhibition of KCa3.1 channel by TRAM34 
would influence the surgery-induced effects. As shown 
in Fig.  2 and S2, neither cognitive decline nor microg-
lial proliferation was induced by surgery in the presence 
of TRAM34. Surgery was associated with an increase in 
peripheral IL-6, regardless of TRAM34 administration 
(P = 0.049). Surgery-induced peripheral HMGB1 increase 
was attenuated by TRAM34 (Fig. 3).

Parenthetically, comparison of anesthesia groups 
(anesthesia + vehicle vs. anesthesia + TRAM34) revealed 
a decrease in spatial memory cognitive score (P = 0.003) 
and an increase in microglial proliferation (P = 0.013) 
(Fig. 2).

In KCa3.1−/− KO mice, surgery neither induced cogni-
tive decline nor microglial proliferation (Fig. 4) although 
plasma IL-6 was increased (p < 0.001).

Discussion
Summary of findings
The ‘surgical phenotype,’ comprising of memory impair-
ment, microgliosis, (proliferation and amoeboid appear-
ance), peripheral inflammation (IL-6) and upregulation 
of the trauma marker (HMGB1) was present in WT 
mice after aseptic trauma in the presence of miglyol only 
(Figs. 2 and 3). Blocking KCa3.1 channel pharmacologi-
cally (through TRAM34 administration) (Figs.  2 and 3) 
or genetically (through KCa3.1 gene inactivation in the 
KCa3.1−/− mice) (Fig.  4) mitigated the surgical pheno-
type (apart from circulating IL-6; see below), highlighting 
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a previously unreported potential role of blockade of the 
KCa3.1 channel for prevention of PND [18].

KCa3.1 blockade and peripheral inflammation
Postoperative IL-6 increase persisted after TRAM34 
administration in WT mice (p = 0.049) as well as in 
KCa3.1−/− mice; similarly, blockade of Kv1.3 channels 
by PAP-1 did not affect postoperative elevation of circu-
lating IL-6 levels [16]. IL-6 is a potent propagator of the 
innate immune response to trauma [11] which can both 
transform into neuroinflammation and facilitate wound 
healing depending on the involved signaling mechanism 

[23–25]. Interestingly, the umitigated rise in postopera-
tive IL-6 in the presence of PAP-1 was associated with 
no deterioration in wound healing suggesting that this 
peripheral cytokine is regenerative, likely through classi-
cal signaling [26]. The influence of TRAM34 adminstra-
tion on wound healing remains to be investigated.

KCa3.1 blocking and HMGB1 release
Previous studies supported a putative causal role of sur-
gical-trauma induced HMGB1 in PNDs [8, 27]; TRAM34 
administration decreased postoperative elevation in 
peripheral HMGB1 levels.

As neutralizing HMGB1 prevented the development of 
PND [8], peripheral HMGB1 levels by themselves might 
play a more important role in PND development than 
previously considered.

KCa3.1 blocking and cognition
Previous research indicated the role of TRAM34 in pro-
tecting memory performance in murine Alzheimer’s 
disease [28–30]. TRAM34 also reduced infarction and 
improved neurological scoring in murine stroke models 
[21].

Similarly, our data illustrate that KCa3.1 blocking miti-
gated immediate PND development.

Limitations
Inflammatory markers
While only two markers of inflammation and trauma (IL-
6; HMGB1) were consistently measured in these experi-
ments, other markers of inflammation also play a key 
role in PND development and should be studied [11, 13]. 
Previous research has, however, shown the importance of 
these markers in PND development [8, 12].

Fig. 3 Modulation of surgery-induced rise in peripheral HMGB1 by 
TRAM34. Comparison of post-surgical changes (surgery vs. anesthesia) 
in peripheral HMGB1 levels between miglyol (reference conditions) and 
miglyol + TRAM34 (T) (challenge conditions) in WT mice. Experimental 
groups included 10 animals. NS: non-significant

 

Fig. 2 Anesthesia/ surgery-dependent changes in cognitive decline, peripheral inflammation and central proliferation of microglia in wild type mice 
(10 animals in each experimental group) treated with miglyol or miglyol + TRAM34 (T). Experimental groups included 10 animals. NS: not significant; T: 
TRAM34.
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TRAM34 administration in anesthesia control groups
The KCa3.1 inhibitor TRAM34 had a negative effect on 
cognition and microgliosis in the anesthesia alone WT 
mice. (Fig.  3); this interesting finding requires further 
exploration of the possible interaction between TRAM34 
and volatile anesthetic agents.

Blank control group
In this study, ‘anesthesia + vehicle’ was considered to be 
the blank/ baseline reference for the intervention e.g. 
Surgery/ TRAM34 injection. An ‘entirely’ blank/ baseline 
group was not included in the experiments.

Which Kca3.1 channel blocking property is paramount?
As previously mentioned, KCa3.1 channels are not only 
present on microglia, but also on cell types such as astro-
cytes, macrophages, T cells and erythrocytes [16].

In this study, experiments show that TRAM34 admin-
istration decreased post-operative microgliosis. The 
effect of TRAM34 administration on astrogliosis was, 
however, not studied.

TRAM34 administration also had a peripheral effect: 
decreasing post-operative plasma HMGB1 levels. As 
monocytes play an important role in the inflammatory 
cascade leading to PND development [8], TRAM34 
administration may also block KCa3.1 channels present 
in these cells.

Kv1.3 and KCa3.1 channels
As this report and previously published data [21] have 
established the roles of KCa3.1 and Kv1.3 in PND devel-
opment, simultaneous administration of TRAM34 and 
PAP-1 should be investigated in order to determine the 
specific role of each channel and whether an interaction, 
including synergism, might take place between these 
channel blockers.

Conclusion
Previously published data established the role of microg-
lial Kv1.3 in perioperative neurocognitive disorders. The 
data presented here indicate that perioperative KCa3.1 
blockade decreases immediate perioperative cognitive 
changes, microglial proliferation as well as the peripheral 
trauma marker HMGB1. It did not influence surgery-
induced IL-6 production.

Future research should investigate the specific role 
of each channel and whether a synergistic interaction 
occurs between the channel blockers.
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