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Abstract
Background: This animal study was conducted to assess the combined effects of high frequency
oscillatory ventilation (HFOV) and prone positioning on pulmonary gas exchange and
hemodynamics.

Methods: Saline lung lavage was performed in 14 healthy pigs (54 ± 3.1 kg, mean ± SD) until the
arterial oxygen partial pressure (PaO2) decreased to 55 ± 7 mmHg. The animals were ventilated in
the pressure controlled mode (PCV) with a positive endexpiratory pressure (PEEP) of 5 cmH2O
and a tidal volume (VT) of 6 ml/kg body weight. After a stabilisation period of 60 minutes, the
animals were randomly assigned to 2 groups. Group 1: HFOV in supine position; group 2: HFOV
in prone position. After evaluation of prone positioning in group 2, the mean airway pressure
(Pmean) was increased by 3 cmH2O from 16 to 34 cmH2O every 20 minutes in both groups
accompanied by measurements of respiratory and hemodynamic variables. Finally all animals were
ventilated supine with PCV, PEEP = 5 cm H2O, VT = 6 ml/kg.

Results: Combination of HFOV with prone positioning improves oxygenation and results in
normalisation of cardiac output and considerable reduction of pulmonary shunt fraction at a
significant (p < 0.05) lower Pmean than HFOV and supine positioning.

Conclusion: If ventilator induced lung injury is ameliorated by a lower Pmean, a combined
treatment approach using HFOV and prone positioning might result in further lung protection.

Background
Prevention of irreversible hypoxemic damage and
improvement of respiratory mechanics are the main treat-
ment goals in patients with acute respiratory distress syn-
drome (ARDS). Mechanical ventilation is the
predominant supportive treatment modality in ARDS, but

has also detrimental side effects, currently termed ventila-
tor induced lung injury (VILI).

Lung protective ventilation strategies aim to ameliorate
VILI by application of a reduced tidal volume (VT = 6 ml/
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kg), sufficient PEEP-level and limitation of the plateau
inspiratory pressure to 35 cm H2O [1-3].

Although it is known, that the degree of hypoxemia is
inconclusive to predict mortality [4], the early response of
the PaO2/FIO2-ratio to therapeutic interventions might be
an indicator for an increased survival rate in ARDS [5,6].
This calls for the most rapid amelioration of hypoxemia
with a mono- or multimodal organ protective treatment
approach.

High frequency oscillatory ventilation (HFOV) with its
constant mean airway pressure (Pmean) with superim-
posed small tidal volumes and active in- and expiration at
a high respiratory frequency might be the ideal lung pro-
tective ventilatory strategy [7]. In a multicenter rand-
omized controlled trial investigating the effectiveness of
HFOV, the significant early improvement of the PaO2/
FIO2-ratio in the HFOV-group was associated with a ten-
dency towards a reduced 30-day mortality compared with
the conventional ventilation group. The PaO2/FIO2-ratio
was the most significant predictor of survival independent
of the selected ventilator strategy [8].

Prone positioning was shown to increase the PaO2 in 70–
80% of patients with ARDS and to improve alveolar ven-
tilation without influencing the 28-day mortality [9,10]. If
PaCO2-reduction was achievable with prone positioning,
28-day mortality in ARDS patients was significantly
reduced [11]. Prone positioning and application of PEEP
were shown to have an additive effect on oxygenation
[12]. However, prone positioning is a potentially danger-
ous manoeuvre with acute and long term complications
such as tracheal tube dislocation, and pressure sores [13].

Combination of different treatments are used in despera-
tion for salvage therapy in patients with ARDS [14]. A
recently published study in 39 medical ARDS-patients
randomized to conventional lung protective ventilation
and HFOV showed comparable increases of the PaO2/
FIO2-ratio after prone positioning. An additive effect of
prone positioning and HFOV could not be demonstrated
[15].

The objective of our study was to evaluate the effects of
prone positioning on gas-exchange, hemodynamics and
respiratory parameters in HFOV-ventilated pigs with
severe lavage induced acute lung injury [16]. We hypoth-
esized, that during HFOV oxygenation can be improved at
a lower Pmean with the animals positioned prone than
supine.

Methods
Animals
The study was conducted in accordance with the National
Institutes of Health guidelines for ethical animal research
and was approved by the Laboratory Animal Care and Use
Committee of the District of Unterfranken, Germany.

The experiments were performed in 14 healthy pigs, Pie-
train breed, all negative for the malignant hyperthermia
gene. The animals were 14 to 18 weeks old, with a mean
(± SD) body weight of 54 ± 3.1 kg.

Experimental preparation
The animals were fasted for 24 hours without limiting
water access. Prior to instrumentation the animals were
sedated with intramuscular ketamin (10 mg/kg), xylazine
hydrochloride (1 mg/kg) and atropine (25 µg/kg) and
placed supine on an operating table armed with a heating
pad to provide core temperature stability (37.3 ± 0.5°C).
Anesthesia was induced with an intravenous bolus of
sodium thiopental (5 mg/kg) using an auricular vein. The
animals' trachea was orally intubated with a cuffed 8.0-
mm ID Edgar tracheal tube (Rueschelit®, Ruesch, Kernen,
Germany) providing an additional lumen embedded in
the tubes inner wall for tracheal pressure monitoring.
Anesthesia and complete muscle relaxation were main-
tained with continuous intravenous infusion of ketamin
(2 mg/kg/h), midazolam (0.5 mg/kg/h), fentanyl (0.01
mg/kg/h) and vecuronium (0.1 mg/kg/h).

The animals were mechanically ventilated with a Servo®

900C ventilator (Siemens-Elema AB, Solna, Sweden)
using pressure controlled ventilation (PCV) with a PEEP
of 5 cmH2O, an inspiratory to expiratory ratio (I:E) of 1:1
and a fraction of inspired oxygen (FIO2) of 1.0. A VT of 6
ml/kg and a respiratory rate (RR) of 25–30 breath/min
were applied resulting in normocapnia.

After a bolus of 500 ml balanced electrolyte solution a
continuous infusion was given at a rate of 2–6 ml/kg/h.
Continuous electrocardiography (Servomed®, Hellige,
Freiburg i. Br., Germany), pulsoxymetry, capnography
and distal tracheal pressure monitoring (SM8050®,
Draeger, Luebeck, Germany) were performed.

2 gm Cefotiam was administered intravenously. After sys-
temic heparinization (300 U/kg Liquemin®, Roche, Rein-
ach, Switzerland) arterial and central venous access were
established transcutanuously using ultrasound guidance
(SonoSite 180 Plus®, SonoSite Inc., Botell, WA, USA). Acti-
vated clotting time (ACT II®, Medtronic, Minneapolis,
MN, USA) was measured hourly and maintained between
150 and 200 seconds throughout the experiment with
heparin bolus injections as needed. The left carotid artery
was cannulated with a 20-gauge catheter (Vygon, Ecouen,
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France). The right internal jugular vein was cannulated
with a 9 French introducer sheath (Arrow, Reading, PA,
USA) and a 7,5 French flow directed thermodilution pul-
monary artery catheter (831F75, Edwards Lifescience,
Irvine, CA, USA) was advanced into the pulmonary artery
under transduced pressure guidance.

Hemodynamic, ventilatory and blood gas measurements
For hemodynamic monitoring pressure transducers refer-
enced to atmospheric pressure at the mid-thoracic level
(Combitrans®, Braun, Melsungen, Germany) and a modu-
lar monitor system (Servomed®, Hellige, Freiburg i. Br.,
Germany) were used. Mean arterial pressure (MAP), mean
pulmonary artery pressure (MPAP), central venous pres-
sure (CVP) and pulmonary artery occlusion pressure
(PCWP) were transduced. Heart rate (HR) was traced by
the electrocardiogram.

Trifold injections of 10-ml aliquots of ice cold saline into
the right atrium at random phases of different respiratory
cycles were used for pulmonary artery catheter-based car-
diac output (CO)-measurements (Explorer®, Edwards
Lifescience, Irvine, CA, USA).

Arterial and mixed venous blood samples were immedi-
ately analyzed for PO2, PCO2 and pH using standard
blood gas electrodes (ABL 505®, Radiometer, Bronshoj,

Denmark). In each sample, hemoglobin and oxygen satu-
ration were measured using spectrophotometry (OSM3®,
Radiometer, Bronshoj, Denmark). Arterial (CaO2), mixed
venous (CvO2) and pulmonary capillary (CCO2) oxygen
contents (ml/dl) and the pulmonary shunt fraction (Qs/
Qt) were calculated using standard formulas. The oxygen-
ation index (OI) was calculated using the formula intro-
duced by Hallmann et al.: OI = (Pmean × FiO2 × 100) /
PaO2 [17].

For tracheal pressure monitoring air filled pressure trans-
ducers (Combitrans®, Braun, Melsungen, Germany) refer-
enced to atmospheric pressure were used [18].
Temperature was measured by thermistor in the pulmo-
nary artery.

Experimental procedure
Lung injury
After instrumentation the animals were stabilized for 30
min in the supine position and mechanically ventilated
with PCV (VT = 6 ml/kg, I:E = 1:1, FIO2 = 1.0, PEEP = 5
cmH2O). RR was adjusted to achieve normocapnia. Base-
line measurements were obtained.

Lung injury was induced by bilateral pulmonary lavages
with 30 ml/kg isotonic saline (38°C) and repeated every
10 minutes until PaO2 decreased to 40–60 mmHg and

Experimental protocolFigure 1
Experimental protocol Tbaseline: 30 min after instrumentation. T0: 60 min after last pulmonary lavage. T20: HFOV (Pmean = 16 
cmH2O). T40: prone positioning in group 2. T60: Pmean increased from 16 to 19 cmH2O. T80: Pmean = 22 cmH2O. T100: Pmean = 25 
cmH2O. T120: Pmean = 28 cmH2O. T140: Pmean = 31 cmH2O. T160: Pmean = 34 cmH2O. T180: Pmean = 16 cmH2O (≈ T0) PCV in all 
groups with HFOV and prone positioning discontinued.
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was stable for 60 minutes with unchanged ventilator
parameters. During induction of lung injury all lungs were
ventilated with PCV, FIO2 = 1.0, PEEP = 5 cmH2O, VT = 6
ml/kg, RR = 40/min. Post injury measurements were
obtained.

Positioning
Prone positioning was performed with supportive rolls
under shoulders and pelvis providing a free abdomen in
order to minimized increases in intra-abdominal pres-
sure.

Study protocol
The FIO2 (1.0) remained unchanged throughout the
experiment. A 20-min equilibration period was given for
each modification following the study protocol. After
time point T0 the standard ventilator was replaced by an
oscillatory ventilator (Sensormedics 3100B, Viasys, Con-
shohocken, PA, USA) without changes in Pmean. The ani-
mals were randomly assigned to two groups (n = 7 each):

Group 1 : HFOV (Bias flow = 30 l/min, amplitude = 70 cm
H2O, I:E = 1:1, RR = 300/min).

Group 2 : HFOV (Bias flow = 30 l/min, amplitude = 70 cm
H2O, I:E = 1:1, RR = 300/min) and prone positioning.

A 20-min period was given for equilibration between each
modification and followed by measurements of hemody-
namics, blood gases and respiratory parameters. The fol-
lowing modifications were performed after completion of
measurements terminating the previous 20-min period
(Figure 1):

(1) Tbaseline: 30 min after instrumentation.

(2) T0: 60 min after last pulmonary lavage.

(3) T20: HFOV (Pmean = 16 cmH2O) had been started in
both groups

Table 1: Hemodynamic and metabolic data at baseline (Tbaseline), after injury (T0), after starting HFOV (T20), after randomisation 
(T40), during Pmean-augmentation (T60-T160), at end of experiment (T180)

Group Tbaseline T0 T20 T40 T60 T80 T100 T120 T140 T160 T180

PaCO2 HFOV 41 +/- 3 # 76 +/- 12 * 73 +/- 8 73 +/- 8 74 +/- 9 74 +/- 10 78 +/- 12 80 +/- 12 82 +/- 12 83 +/- 13 85 +/- 10 #
[mmHg] HFOV 

prone
41 +/- 3 # 77 +/- 6 * 79 +/- 6 70 +/- 6 71 +/- 6 72 +/- 6 75 +/- 4 76 +/- 4 77 +/- 5 77 +/- 6 78 +/- 5

pH HFOV 7,43 +/- 
0,05 #

7,11 +/- 
0,13 *§

7,15 +/- 
0,09

7,15 +/- 
0,09

7,19 +/- 
0,1

7,21 +/- 
0,09 #

7,21 +/- 
0,1 #

7,15 +/- 
0,13

7,15 +/- 
0,13

7,15 +/- 
0,13

7,16 +/- 
0,12

HFOV 
prone

7,45 +/- 
0,03 #

7,22 +/- 
0,1 *

7,19 +/- 
0,09

7,2 +/- 
0,06

7,23 +/- 
0,06

7,21 +/- 
0,05

7,21 +/- 
0,05

7,19 +/- 
0,06

7,18 +/- 
0,07

7,19 +/- 
0,07

7,22 +/- 
0,1

Qs/Qt HFOV 0,01 +/- 
0,03 #

0,65 +/- 
0,15 *

0,57 +/- 
0,12

0,57 +/- 
0,12 §

0,5 +/- 
0,16 #§

0,42 +/- 
0,21 *#§

0,33 +/- 
0,26 *#§

0,24 +/- 
0,2 *#

0,19 +/- 
0,15 #

0,15 +/- 
0,1 #

0,64 +/- 
0,09 *

(ratio) HFOV 
prone

0 +/- 0,02 
#

0,56 +/- 
0,07*

0,5 +/- 
0,08

0,36 +/- 
0,11 *#

0,24 +/- 
0,13 #*

0,2 +/- 0,1 
#

0,16 +/- 
0,1 #

0,15 +/- 
0,1 #

0,13 +/- 
0,09 #

0,12 +/- 
0,06 #

0,56 +/- 
0,05 *

SgvO2 HFOV 79 +/- 10 # 63 +/- 10 
*§

57 +/- 8 57 +/- 8 61 +/- 11 65 +/- 11 69 +/- 7 72 +/- 3 75 +/- 2 # 76 +/- 3 # 53 +/- 11 
#*

[%] HFOV 
prone

87 +/- 3 # 48 +/- 10 * 53 +/- 8 65 +/- 14 
*#

67 +/- 5 # 73 +/- 4 # 71 +/- 6 # 72 +/- 7 # 74 +/- 3 # 75 +/- 4 # 47 +/- 11 *

PIP HFOV 20 +/- 3 # 28 +/- 3 * 20 +/- 1 *# 20 +/- 1 # 23 +/- 1 *# 26 +/- 1 *# 28 +/- 1 * 32 +/- 1 *# 35 +/- 1 *# 37 +/- 1 *# 27 +/- 3 *§
[cmH2O] HFOV 

prone
18 +/- 3 # 28 +/- 2 * 20 +/- 1 *# 20 +/- # 23 +/- 1 *# 26 +/- 1 * 28 +/- 1 32 +/- 1 *# 35 +/- 1 *# 37 +/- 1 *# 29 +/- 2 *

HR HFOV 87 +/- 19 89 +/- 14 § 79 +/- 15 80 +/- 15 § 78 +/- 18 § 75 +/- 18 § 78 +/- 21 § 75 +/- 19 § 69 +/- 12 # 76 +/- 21 77 +/- 18
[/min] HFOV 

prone
83 +/- 15 # 66 +/- 13 * 68 +/- 15 58 +/- 8 57 +/- 8 53 +/- 4 52 +/- 5 56 +/- 4 57 +/- 4 62 +/- 9 75 +/- 11

MAP HFOV 79 +/- 13 89 +/- 11 81 +/- 12 81 +/- 12 81 +/- 8 85 +/- 8 84 +/- 5 84 +/- 5 82 +/- 5 84 +/- 9 84 +/- 4
[mmHg] HFOV 

prone
83 +/- 9 84 +/- 7 83 +/- 7 83 +/- 10 81 +/- 8 79 +/- 8 80 +/- 7 85 +/- 12 78 +/- 5 78 +/- 8 83 +/- 7

MPAP HFOV 23 +/- 5 # 32 +/- 6 * 33 +/- 6 33 +/- 6 33 +/- 6 34 +/- 5 37 +/- 6 37 +/- 4 # 38 +/- 4 # 39 +/- 4 # 33 +/- 5
[mmHg] HFOV 

prone
22 +/- 6 # 29 +/- 4 * 34 +/- 4 32 +/- 6 35 +/- 5 # 34 +/- 3 35 +/- 3 # 35 +/- 4 # 36 +/- 2 # 36 +/- 2 # 30 +/- 4 *

CVP HFOV 6,7 +/- 1,3 
#

9 +/- 2,4 * 9,7 +/- 2,5 9,7 +/- 2,5 10 +/- 2,8 
§

11,6 +/- 
2,9 #

12 +/- 2,4 
#

13,7 +/- 1 
#

13,9 +/- 
0,9 #

14,3 +/- 
1,1 #

9,4 +/- 1,3 
*

[mmHg] HFOV 
prone

6,9 +/- 1,3 
#

10,9 +/- 
3,3 *

10 +/- 1 10,9 +/- 
1,5

12,7 +/- 
2,9

11,9 +/- 
2,3

12,4 +/- 
2,4

12,3 +/- 
2,6

12,6 +/- 
2,1

12,6 +/- 
2,1

10,7 +/- 
2,3

PCWP HFOV 9,1 +/- 2,3 10 +/- 3,7 11 +/- 3,8 11 +/- 3,8 12 +/- 3,2 12,1 +/- 
2,6

12,4 +/- 2 14,1 +/- 
2,4 #

15 +/- 1,9 
#

15 +/- 1,8 
#

11 +/- 3,3 
*

[mmHg] HFOV 
prone

9,1 +/- 2,3 11,1 +/- 
1,9

11,9 +/- 
1,3

11,3 +/- 
2,1

12,9 +/- 
2,7

12,6 +/- 
1,7

12,9 +/- 
1,9

12,1 +/- 
1,6

12,9 +/- 
1,2

12,6 +/- 
1,1

11,1 +/- 
1,3

Data are mean ± standard deviation; Two-way-ANOVA with repeated measurements (Student-Newman-Keuls Method – post hoc test): * p < 0.05 
vs. TT-20; # p < 0.05 vs. T0; § p < 0.05 HFOV vs. HFOV prone.
CVP = central venous pressure; HFOV = high frequency oscillatory ventilation; HR = heart rate; MAP = mean arterial pressure; MPAP = mean 
pulmonary artery pressure; PCV = pressure controlled ventilation; PCWP = pulmonary capillary wedge pressure; Qs/Qt = pulmonary shunt 
fraction; SgvO2 = mixed venous oxygen saturation.
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(4) T40: The animals had been positioned prone in group
2; no changes were made in group1.

(5) T60: Pmean had been increased from 16 to 19 cmH2O.
Pmean, measured at the tip of the endotracheal tube, was
the ventilatory parameter modified during the experiment
from time point T40 onwards. To change Pmean, continu-
ous distending pressure (CDP) was elevated in steps of 3
cm H2O.

(6) T80: Pmean = 22 cmH2O. (7) T100: Pmean = 25 cmH2O.
(8) T120: Pmean = 28 cmH2O. (9) T140: Pmean = 31 cmH2O.
(10) T160: Pmean = 34 cmH2O.

(11) T180: Pmean had been decreased to 16 cmH2O (≈ T0).
HFOV had been discontinued and ventilation had been
set to T0-values in all groups (PCV, PEEP = 5 cm H2O, VT
= 6 ml/kg, RR = 40/min). The animals in group 2 had been
positioned supine.

At the end of the experiment the animals were killed using
an intravenous overdose of sodium thiopental and T 61
(Intervet, Unterschleissheim, Germany).

Statistical analysis
Values are reported as mean ± SD. Statistical analyses were
performed with Statistica for Windows, version 5.1
(StatSoft, Tulsa, OK, USA). Two-way analysis of variance
(ANOVA) for repeated measurements with factors mode

and time were used for data analysis. Student-Newman-
Keuls' post hoc test was used for comparison of significant
ANOVA results within and between the groups. Data of
the first measurement set (Tbaseline) were only compared
with data of the second measurement set (T0). P values
less than 0.05 were considered significant.

Results
Detailed data regarding hemodynamics, blood gases and
respiratory parameters are presented in table 1. PaO2-, OI-
and CO-changes during the experimental period are dis-
played in figures 2, 3, 4.

Lung Injury
All animals passing Tbaseline survived the study period.
Acute lung injury was induced in all animals by means of
repeated lung lavages (19 ± 2) with significant changes (p
< 0.05) in PaO2, PaCO2, SvO2, Pmean, PIP, Qs/Qt, CVP,
MPAP and CO: PaO2 decreased from 652 ± 37.5 mmHg to
55 ± 7.5 mmHg, PaCO2 increased from 41 ± 3 mmHg to
76.5 ± 9 mmHg, SvO2 decreased from 83 ± 6.5 % to 60.5
± 10 %, Pmean increased from 11.5 ± 1.4 cmH2O to 16.5 ±
1.2 cmH2O, PIP increased from 19 ± 3 cmH2O to 28 ± 2.5
cmH2O, Qs/Qt increased from 1 ± 0.5 % to 60.5 ± 11 %,
CVP increased from 7.8 ± 1.3 mmHg to 10 ± 2.9 mmHg,
MPAP increased from 22.5 ± 5.5 to 30.5 ± 5 mmHg, CO
increased from 3.1 ± 0.4 l/min to 5.7 ± 0.8 l/min. No sig-
nificant differences could be detected between the 2
groups for the parameters tested at time points Tbaseline and

Arterial oxygen partial pressure (PaO2) throughout the study protocolFigure 2
Arterial oxygen partial pressure (PaO2) throughout the study protocol Data are mean ± standard deviation. # p < 0.05 vs. T0; 
* p < 0.05 vs. TT - 20; § p < 0.05 HFOV vs. HFOV prone
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T0. Reduction of Pmean to the T0-level (T180) combined
with PCV at T0-ventilator settings resulted in immediate
significant increases in CO and Qs/Qt to T0-values in both
groups without significant differences between the
groups. Accordingly PaO2 decreased significantly to T0-
levels.

Pulmonary gas exchange
Oxygenation improved significantly with rising Pmean in
both groups. At T80 and T100 PaO2 was significantly higher
in the prone positioned animals. A significantly higher
PaO2 compared to the preceeding time point was detected
at T80 in the prone positioned animals and at T120 in the
animals positioned supine. Significant improvement of
OI occurred immediately after prone positioning (T40)
lasting until T100. SvO2 was significantly higher from T40
onwards in the HFOV-prone group if compared to T0
without detectable significant differences between the
groups. All animals remained hypercapnic with a PaCO2
greater 70 mmHg resulting in a pH of less than 7.23
throughout the experiment in both groups.

Respiratory parameters
PIP increased significantly in all groups with rising Pmean
without differences between the groups.

Hemodynamics
MAP remained stable in both groups. CVP and PCWP
started to rise significantly in the HFOV group from T100

and T140 respectively if compared to T0. MPAP was
increased significantly in both groups from T140 if com-
pared to T0. From T40 to T140 CO and HR were significantly
lower and continuously falling in the HFOV-prone group.
At T160 and T180 no differences between the groups could
be detected regarding CO and HR. Qs/Qt was significantly
lower from T40 to T120 in the HFOV-prone group without
differences between the groups from T140 onwards.

Discussion
We evaluated the effects of prone positioning combina-
tion of HFOV and prone positioning in an adult animal
model of ARDS. The major findings of our study are: 1)
HFOV and prone positioning improves oxygenation at a
lower Pmean than HFOV and supine positioning. 2) HFOV
and prone positioning result in significant reduction of
pulmonary shunt fraction and normalisation of cardiac
output at a lower Pmean than HFOV and supine position-
ing. 3) Hypercapnia was neither ameliorated by HFOV
nor combination of HFOV with prone positioning.

Since therapeutic alternatives are lacking and the underly-
ing concepts sound reasonable, multimodal therapeutic
approaches are commonly used for salvage therapy in
patients with ARDS [19]. Apart from subsets of patients in
other HFOV trails, the combined use of HFOV and prone
positioning is described in one case report and was inves-
tigated systematically in a prospective randomized study
including 39 medical patients [15,20]. Papazian et al.

Oxygenation Index (OI) throughout the study protocolFigure 3
Oxygenation Index (OI) throughout the study protocol Data are mean ± standard deviation. # p < 0.05 vs. T0; * p < 0.05 vs. TT 

- 20; § p < 0.05 HFOV vs. HFOV prone
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found the prone position combined with HFOV and PCV
superior to HFOV and supine positioning in terms of oxy-
genation, but failed to demonstrate additive effects. How-
ever, the inflammatory mediators were elevated during
HFOV-prone but not during HFOV-supine. The authors
themselves put these results into perspective, since a con-
trol group was lacking and a time dependent natural
change in the concentration of inflammatory mediators
could not be excluded. It is a limitation of our study, that
we did not investigate a control group ventilated in a con-
ventional lung protective mode and positioned prone in
order to detect additive effects of the two treatment
modalities. Papazian et al. stressed the difficulties associ-
ated with bronchoalveolar lavages in ARDS patients in
terms of patient safety and feasibility. This calls for long
term experiments with large animals comparing conven-
tional lung protective ventilation and HFOV with and
without prone positioning looking not only at gas
exchange and respiratory mechanics but also at histology
and inflammatory mediators.

Current concepts to ameliorate the detrimental effects of
VILI focus on reduction of volutrauma, barotrauma, atel-
ectrauma and biotrauma [21]. It was shown in a small ani-
mal model, that HFOV had the same effect on
oxygenation and pulmonary compliance than a conven-
tional lung protective ventilatory approach but also

reduced the systemic inflammatory response [22-24].
However, tracheal tube size, respiratory frequency and
pressure amplitude are markedly different in small ani-
mals resulting in non-comparable changes of pulmonary
mechanics and oscillatory pressure transmission. There-
fore, experiments in large animals should be performed
before HFOV is assessed systematically in adult patients
with ARDS. Aiming to simulate a life-threatening clinical
scenario, we induced an acute lung injury with severe
hypoxemia and hypercapnia.

It was striking, that 19 ± 2 lavages with 30 ml/kg isotonic
saline were needed to reach the targeted PaO2-value, sug-
gesting a lung protective effect of the low-tidal-volume
approach during ARDS-induction even on a low PEEP-
level (5 cmH2O). Intrinsic PEEP was measured during
PCV by means of an endexpiratory occlusion maneuver
for five seconds after every third lavage and was always
less than 1 cm H2O. In two studies using sheep with a
body weight of 30 kg, 4 lavages were needed to achieve a
PaO2 of less than 120 mmHg. These animals were venti-
lated with a VT of 12 ml/kg in a volume controlled mode
[25,26]. Stability of the experimentally induced ARDS was
proven two-fold: 1) A stabilisation period of 60 min. with
unchanged ventilatory parameters was kept between the
last pulmonary lavage and T0. 2) After T160, HFOV and
prone positioning were discontinued, all animals were

Cardiac output (CO) throughout the study protocolFigure 4
Cardiac output (CO) throughout the study protocol. Data are mean ± standard deviation. # p < 0.05 vs. T0; * p < 0.05 vs. TT - 

20; § p < 0.05 HFOV vs. HFOV prone
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ventilated with PCV and PEEP was reduced to 5 cmH2O
[26]. This manoeuvre resulted in immediate reversal of
PaO2, PaCO2 and hemodynamics to T0-values.

Although the combined application of HFOV and prone
positioning improved oxygenation, normalized cardiac
output and significantly reduced pulmonary shunt frac-
tion at a lower Pmean than HFOV alone, hypercapnia was
not influenced in our experiment. This is consistent with
clinical results, since normocapnia was not achievable
with HFOV alone in many adults with ARDS [8,27]. The
ability to control the PaCO2 with the least possible venti-
lator pressure amplitude, e.g. by using HFOV, might result
in further lung protection [28]. However, VT-reduction
increases the risk of hypercapnia, thereby aggravating the
pulmonary inflammatory response [29]. Even though per-
missive hypercapnia does not increase mortality and
might have beneficial effects, such as lung protection from
reperfusion injury [30], there are clinical situations where
hypercapnia is contraindicated [31]. We knew from pilot
experiments that CO2-elimination could only be
increased in our animal model using a respiratory rate of
less than 3 Hz, losing the advantage of oscillation in
reducing lung damage [32]. Another possibility to
improve CO2-elimination during HFOV is deflation of the
cuff of the endotracheal tube. Since comparability of Pmean
was a prerequisite for the study and airway-pressure meas-
urement at the tip of the endotracheal tube are prone to
artefacts, we could not realize this option. There might be
a need to combine HFOV with extracorporeal CO2-elimi-
nation whenever normocapnia is mandatory, e.g. in
patients with cerebral oedema [33].

A lung volume between the lower and upper inflection
point, derived from the inflation pressure-volume curve,
is traditionally interpreted as ideal for oxygenation [34].
Evidence is raising, that best oxygenation is a better indi-
cator for an open lung-PEEP during a decremental PEEP-
trial after a recruitment manoeuvre [35]. We aimed to
achieve optimal lung volume using increases in PaO2 as a
crude surrogate for alveolar recruitment and avoidance of
hyperinflation. Since an initial recruitment manoeuvre in
our animals might have resulted in fatal cardiovascular
collapse and barotrauma [23], we increased Pmean stepwise
and did not create a pressure volume relationship [36,37].
Generation of a pressure volume curve can cause lung
derecruitment [38]. Further deterioration of oxygenation
in our animals would have implied a high risk of irrevers-
ible hypoxia. The severity of hypoxemia present in our
animals after ARDS-induction was our motivation not to
randomize the airway pressure changes but to stepwise
increase Pmean[39].

It is the major limitation of this study, that it was per-
formed in pigs and not in patients. In adults not surfactant

deficiency but alveolar flooding is the predominant mech-
anism in ARDS-development. It limits the transferability
of most ARDS model derived results to clinical practice
[40].

Conclusion
In this saline lavage induced porcine model of ARDS, we
showed in a clinically relevant scenario, that the combina-
tion of HFOV and prone positioning improved oxygena-
tion at a lower Pmean than HFOV combined with supine
positioning. In addition, reduction of the pulmonary
shunt fraction and normalisation of the cardiac output
was achieved at lower airway pressures. The ventilator
pressure amplitude is a major determinant of VILI. HFOV
might be a step towards further lung protection, since suf-
ficient oxygenation can be restored or maintained with a
significant reduction of the ventilator pressure amplitude
when compared to standard respirator modes. However,
HFOV failed to be a major component in ARDS treatment
algorithms in adult patients. Having in view a long history
of failed multimodal treatment approaches in ARDS
research, we now conclude from our results that a combi-
nation of HFOV and prone positioning seems promising
and should be further investigated systematically and
compared to conventional lung protective ventilation.
Long term trials in large animals and aquisition of histo-
logic and immunologic data clearly seem justified.

Abbreviations
ARDS acute respiratory distress syndrome

CaO2 arterial oxygen content

CCO2 pulmonary capillary oxygen content

CDP continuous distending pressure

CO cardiac output

CvO2 mixed venous oxygen content

CVP central venous pressure

FIO2 fraction of inspired oxygen

HFOV high frequency oscillatory ventilation

HR heart rate

I:E inspiratory to expiratory ratio

MAP mean arterial pressure

MPAP mean pulmonary artery pressure
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OI Oxygenation index

PaCO2 Arterial carbondioxide partial pressure

PaO2 Arterial oxygen partial pressure

PEEP positive end-expiratory pressure

PIP peak inspiratory pressure

PCV pressure controlled ventilation

PCWP pulmonary capillary wedge pressure

Pmean mean airway pressure

Qs/Qt pulmonary shunt fraction

RR; f respiratory rate

VT tidal volume
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