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Global end-diastolic volume increases to maintain
fluid responsiveness in sepsis-induced systolic
dysfunction
Ronald J Trof1,2, Ibrahim Danad1 and AB Johan Groeneveld1,3*
Abstract

Background: Sepsis-induced cardiac dysfunction may limit fluid responsiveness and the mechanism thereof
remains unclear. Since cardiac function may affect the relative value of cardiac filling pressures, such as the
recommended central venous pressure (CVP), versus filling volumes in guiding fluid loading, we studied these
parameters as determinants of fluid responsiveness, according to cardiac function.

Methods: A delta CVP-guided, 90 min colloid fluid loading protocol was performed in 16 mechanically ventilated
patients with sepsis-induced hypotension and three 30 min consecutive fluid loading steps of about 450 mL per
patient were evaluated. Global end-diastolic volume index (GEDVI), cardiac index (CI) and global ejection fraction
(GEF) were assessed from transpulmonary dilution. Baseline and changes in CVP and GEDVI were compared among
responding (CI increase ≥10% and ≥15%) and non-responding fluid loading steps, in patient with low (<20%, n = 9)
and near-normal (≥20%) GEF (n = 7) at baseline.

Results: A low GEF was in line with other indices of impaired cardiac (left ventricular) function, prior to and after
fluid loading. Of 48 fluid loading steps, 9 (of 27) were responding when GEF <20% and 6 (of 21) when GEF ≥20.
Prior to fluid loading, CVP did not differ between responding and non-responding steps and levels attained were
23 higher in the latter, regardless of GEF (P = 0.004). Prior to fluid loading, GEDVI (and CI) was higher in responding
(1007 ± 306 mL/m2) than non-responding steps (870 ± 236 mL/m2) when GEF was low (P = 0.002), but did not differ
when GEF was near-normal. Increases in GEDVI were associated with increases in CI and fluid responsiveness,
regardless of GEF (P < 0.001).

Conclusions: As estimated from transpulmonary dilution, about half of patients with sepsis-induced hypotension
have systolic cardiac dysfunction. During dysfunction, cardiac dilation with a relatively high baseline GEDVI
maintains fluid responsiveness by further dilatation (increase in GEDVI rather than of CVP) as in patients without
dysfunction. Absence of fluid responsiveness during systolic cardiac dysfunction may be caused by diastolic
dysfunction and/or right ventricular dysfunction.
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Background
Patients with severe sepsis or septic shock commonly
develop cardiac dysfunction, even in the absence of
cardiac ischemia [1-3]. These abnormalities may include
depression of left and/or right ventricular systolic function
and/or diastolic dysfunction and may be accompanied by
ventricular dilatation, as estimated from echocardiography
or radionuclide cineangiography [4,5]. This cardiac dys-
function is usually reversible and returns to normal in 7
to 10 days in survivors [6-8]. Systolic dysfunction-induced
ventricular dilatation is suggested to be an adaptive mech-
anism to maintain a high cardiac output which is associated
with survival [4,9], while other investigators denied such a
dilatory response arguing in favor of impaired relaxation
and diastolic (often upon systolic) dysfunction contributing
to non-survival [8,10-16].
Fluid loading is often the initial treatment of sepsis-

induced hypotension and the response may be diminished
in sepsis-induced cardiac depression associated with severe
disease and non-survival (5,13,14). On the other hand, fluid
overloading when the heart is non-responsive and the
central venous pressure (CVP) is inadvertently elevated
is potentially harmful and also associated with mortality,
emphasizing the value of appropriate haemodynamic
monitoring [17]. By optimizing preload and assessing
fluid responsiveness, deleterious hypoperfusion and fluid
overloading may be prevented. Traditionally, filling
pressures, like CVP, have been used to guide fluid loading
in sepsis-induced hypotension [17-20], even though its pre-
dictive value for fluid responsiveness during mechanical
ventilation and altered cardiac function is doubtful [21-23].
Alternatively, the transpulmonary dilution technique esti-
mates the global end-diastolic volume index (GEDV), and
pulmonary blood volume index (PBVI) as a superior and
global measures of cardiac preload [11,23,24]. The GEDVI
represents the volumes of the right and left heart at the end
of diastole and often reflects left ventricular end-diastolic
volume estimated by echocardiography provided that right
ventricular dilatation is absent [25].
A relatively low GEDVI may predict fluid responsiveness

(and a relatively high GEDVI absence thereof), but the role
of systolic and/or diastolic dysfunction with respect to
interpretation of absolute values remains unclear, even
though changes in stroke volume or cardiac output correl-
ate to changes in GEDVI [21,23,26]. Indeed, the relative
value of GEDVI and filling pressures in determining fluid
responsiveness depends on systolic cardiac function, at least
in non-septic patients [27]. Conversely, echocardiographic
end-diastolic left ventricular dimensions poorly predicted
fluid responsiveness but changes were superior to filling
pressures in monitoring changes in cardiac output upon
fluid loading in some studies on sepsis [9,23]. In con-
trast, fluid responsiveness was found to be associated
with biventricular dilatation by nuclear angiography and
non-responsiveness appeared attributable to right ven-
tricular systolic dysfunction following mild pulmonary
hypertension in other studies on sepsis [6,9].
In view of the above controversies on mechanisms and

predictive values, we evaluated and compared filling
volumes to pressures in determining the cardiac response
to fluid loading according to systolic cardiac function in
sepsis-induced hypotension, in the hypothesis that, even
in dysfunctioning hearts, cardiac dilatation is required to
increase cardiac output upon fluid loading.

Methods
This was a sub-study of a prospective, non-randomized,
single-center clinical trial, investigating the cardiorespi-
ratory effects of various resuscitation fluids in presumed
hypovolemia during sepsis and non-sepsis, in mechanic-
ally ventilated patients in the intensive care unit (ICU)
[24,28]. We analyzed, retrospectively, 16 patients with
sepsis monitored by both CVP and the transpulmonary
dilution technique. These patients were divided in two
groups according to a low GEF (<20%) and near-normal
GEF (≥20%). The cutoff of 20% approximately reflects a
cutoff of 40% ejection fraction of the left ventricle as
measured by echocardiography, provided that there is
no right ventricular dysfunction [29-31]. The original
study was approved by the Ethics Committee of the Vrije
Universiteit Medical Center and written informed consent
was obtained. We analyzed the effect of colloid fluid load-
ing in patients with sepsis-induced hypotension. Colloid
fluid loading was given with modified fluid gelatin 4%,
hydroxyethyl starch (HES) 6% or albumin 5%, all of
which have similar oncotic properties and haemodynamic
responses [24,28,32]. We only analyzed patients who com-
pleted fluid loading and measurements up to t = 90 min.
Inclusion criteria, at enrollment and start of the protocol,
were clinical criteria for presumed hypovolemia commonly
triggering fluid infusion, such as a relatively arbitrarily
chosen systolic blood pressure <110 mmHg and a low CVP,
roughly taking transmission of positive end-expiratory
pressure (PEEP) into account (Table 1). Exclusion criteria
were age >75 year, preterminal illness with a life expectancy
of less than 24 hours, or known anaphylactic reactions to
colloids. Sepsis was defined according to international
guidelines [33]. The origin of sepsis was defined by
clinical signs and symptoms, imaging techniques and
positive local and/or blood cultures [33]. All patients
were on controlled mechanical ventilation and positive
end-expiratory pressure (PEEP).

Study protocol
The protocol was started in the ICU when patients met
the inclusion criteria. Demographic characteristics were
recorded, including the acute physiology and chronic health
evaluation (APACHE-II). After baseline measurements



Table 1 Fluid challenge protocol

CVP at start: ≤ 8 if PEEP ≤15 200 ml/10 min

≤ 12 if PEEP >15 200 ml/10 min

≤ 10 if PEEP ≤15 100 ml/10 min

≤ 14 if PEEP >15 100 ml/10 min

≤ 12 if PEEP ≤15 50 ml/10 min

≤ 16 if PEEP >15 50 ml/10 min

CVP during infusion: increase >5 stop

CVP after 10 min: increase ≤2 continue

2< increase ≤5 wait 10 min

increase >5 stop

CVP after 10 min waiting: increase >2 stop

increase ≤2 repeat

CVP Central venous pressure (mmHg), PEEP Positive end-expiratory pressure (cm H2O).
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were taken, fluids were given over 90 min on the basis
of the response within predefined limits of increases in
CVP, according to a previously described protocol (Table 1)
[24,28,32]. Up to 200 mL of fluid were given every 10 min,
provided that the increase in CVP upon fluid loading did
not exceed critical values, and this policy has been proven
safe in previous studies (i.e. not evoking pulmonary edema)
[24,28]. The maximum amount of fluid infused was
1800 mL. Fluid responsiveness was defined as an increase
of CI ≥10 and 15%, in accordance with the literature
[22,33], between t = 0-30, t = 30-60 and t = 60-90 min upon
fluid loading. Concomitant vasoactive and sedative drug
treatment and ventilatory settings remained unchanged
during fluid loading.

Measurements
Heart rate (HR) and mean arterial pressure (MAP) were
recorded at t = 0 and 90 min. MAP and CVP were mea-
sured in the supine position after calibration, zeroing to at-
mospheric pressure at the midchest level at end-expiration
(TramscopeR, Marquette GE, Milwaukee, Wisconsin).
Cardiac output, GEDVI, PBVI and CVP were measured
every 30 min, from t = 0 to 90 min. Relevant measurements
were indexed to body surface area (BSA), giving stroke
volume index (SVI, mL/m2), cardiac index (CI, L/min/m2),
GEDVI (n 680–800 mL/m2) and PBVI (n 150–250 mL/m2),
respectively. For these measurements, the transpulmonary
thermal-dye indicator dilution technique was used (11).
These measurements involve averages obtained from 2–3
central venous injections of 15 mL of ice-cold indocyanine
green in 5% glucose solution and concomitant registration
of the dilution curves in the femoral artery, by a 3 F cath-
eter equipped with a thermistor (PV 2024, Pulsion Medical
Systems, Munich, Germany). This catheter was inserted
via a 4 F introducing sheath (Arrow, Reading, USA) and
connected to a bedside computer (COLD Z-021, Pulsion
Medical Systems, Munich, Germany. The COLD Z-021
is the precursor to the current transpulmonary
thermodilution pulse contour cardiac output (PiCCO™)
technique and yields the same cardiac parameters. Repro-
ducibility of measurements is typically within 10% (11).
GEDVI represents the volumes of the right and left heart
at end-diastole and reflects left ventricular dimensions
obtained by echocardiography in the absence of overt
right ventricular distention (25). The ratio between stroke
volume index (cardiac index/HR) and GEDVI/4 is defined
as the global ejection fraction (GEF, normal values 25-35%),
and is an indicator of left ventricular systolic function, pro-
vided that there is no right ventricular dysfunction (29–31).
Left ventricular stroke work index (LVSWI, gm/m2) was
calculated from SVI x (MAP-CVP) x 0.0136 and cardiac
function index (CFI, n 18.0-26.0 1/min) from CI/(GEDVI/4)
(30,31). Preload-recruitable stroke work was defined by
LVSWI/GEDVI (24). CFI, LVSWI and LVSWI/GEDVI were
used to assess cardiac (e.g. left ventricular) systolic function.
The lung injury score was calculated from radiographic
densities, oxygenation ratio PaO2/FIO2, PEEP and dynamic
compliance and ranges between 0–4. Mortality refers to
death in the ICU.

Statistical analysis
For categorical data, Fisher exact tests were used. Since
continuous data were normally distributed (Kolmogorov-
Smirnov test, P >0.05), they were summarized by mean ±
standard deviation (SD) and parametric tests were done.
Paired and unpaired t-tests were used to compare data in
time and between GEF groups, respectively generalized es-
timating equations (GEE) were used to evaluate differences
in baseline and changes in variables between summated
responding and non-responding fluid loading steps in
each GEF group, to evaluate their determining values,
respectively, taking repeated measurements in the
same patients and type and volume of fluid administered
(as covariates) into account. Exact two-sided P values >0.001
are given and considered statistically significant when <0.05.
All analyses were conducted using SPSS version 15.0
(SPSS Chicago, Ill, USA).

Results
Table 2 summarizes the characteristics of patients. The
haemodynamic variables differ according to GEF and
changes upon fluid loading. There was no difference in
the amount and type of fluids infused between the GEF
groups. GEF did not change during fluid loading. In the
low GEF group, other function indices also pointed to
systolic cardiac dysfunction, prior to and after fluid loading,
even though the CI attained with fluid loading did not differ
among the groups. The number of fluid loading responses
did not differ according to GEF, but the increase in CI
decreased with increasing fluid loading steps only when



Table 2 Patient characteristics

GEF <20% GEF ≥20%

(n = 9) (n = 7) P value

Age 62 ± 9 57 ± 9 0.32

Male/female 7/2 4/3 0.60

APACHE II 16 ± 4 12 ± 5 0.08

Cardiac premorbidity 4 1 0.31

Sepsis origin 0.38

pulmonary 4 3

abdominal 2 0

CNS 0 1

urogenital 1 0

unknown 2 3

Bloodstream infection 0.41

Gram- 2

Gram+ 2 2

Fungi 1

PEEP, cm H2O 14 ± 6 12 ± 3 0.17

Tidal volume, mL/kg 8.0 ± 0.8 9.0 ± 1.6 0.08

PaO2/FIO2 209 ± 54 193 ± 62 0.60

Lung injury score 2.2 ± 0.8 2.5 ± 0.8 0.60

ICU mortality 4 2 0.37

Haemodynamics

HR, /min

t = 0 106 ± 18 90 ± 25 0.15

t = 90 103 ± 16 95 ± 22 0.42

MAP, mm Hg

t = 0 73 ± 12 74 ± 9 0.84

t = 90 88 ± 191 89 ± 131 0.87

CVP, mm Hg

t = 0 9 ± 5 8 ± 3 0.61

t = 90 12 ± 52 12 ± 32 0.83

CI, L/min

t = 0 3.3 ± 0.6 4.3 ± 1.5 0.06

t = 90 3.9 ± 1.02 5.0 ± 1.43 0.09

SVI, mL/m2

t = 0 31 ± 6 49 ± 12 0.002

t = 90 38 ± 91 53 ± 11 0.01

LVSWI, gm/m2

t = 0 27 ± 5 43 ± 8 <0.001

t = 90 39 ± 113 55 ± 114 0.01

GEDVI, mL/m2

t = 0 891 ± 257 787 ± 140 0.35

t = 90 963 ± 2731 866 ± 1701 0.43

GEF,%

t = 0 15 ± 2 25 ± 5 n.a.

Table 2 Patient characteristics (Continued)

t = 90 16 ± 4 25 ± 7 0.005

CFI, 1/min

t = 0 15.2 ± 2.9 22.1 ± 6.2 0.01

t = 90 16.8 ± 4.0 23.4 ± 5.5 0.01

LVSWI/GEDVI, gm/mL

t = 0 0.13 ± 0.04 0.22 ± 0.04 <0.001

t = 90 0.17 ± 0.074, 3 0.26 ± 0.07 0.02

Norepinephrine and/or dopamine 8 6 0.70

Norepinephrine, μg/kg/min 0.09 ± 0.11 0.06 ± 0.12 0.25

Dopamine, μg/kg/min 5.6 ± 3.4 4.9 ± 4.3 0.92

Fluid, mL 1456 ± 296 1271 ± 269 0.22

Gelatin/HES/albumin 3/2/4 2/3/2 0.66

Mean ± SD or number of patients, where appropriate.
Abbreviations: GEF Global ejection fraction, APACHE II Acute physiology and
chronic health evaluation, CNS Central nervous system, PEEP Positive
end-expiratory pressure, ICU Intensive care unit, PaO2/FIO2 Arterial partial
pressure of O2 over inspiratory O2 fraction, HR Heart rate, MAP Mean arterial
pressure, CVP Central venous pressure, CI Cardiac index, SVI Stroke volume
index, LVSWI Left ventricular stroke volume index, GEDVI Global end-diastolic
volume, CFI Cardiac function index, HES Hydroxyethyl starch. 1P = 0.02 ,
2P = 0.002, 3P = 0.009, 3P = 0.04 vs. t = 0, n.a. not applicable.
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GEF was low (P = 0.04). The increases with fluids in
CVP, GEDVI, MAP, LVSWI and CI did not differ among
GEF groups, even though SVI, PBVI and LVSWI/GEDVI
increased in the low GEF group only.
Fluid loading steps in GEF groups
Responses were independent of the type of colloid fluid,
regardless of GEF and cutoff for fluid responsiveness.
The CI prior to each fluid loading step was higher in
responding than non-responding steps in the low GEF
group, but lower in the near-normal GEF group (Table 3).
The CVP did not differ between responding and non-
responding steps in both GEF groups but attained
higher values after fluid loading in non-responding
than in responding steps, regardless of GEF. When
GEF was low, GEDVI was higher prior to responding
than non-responding fluid loading steps, while GEDVI
in the near-normal GEF group did not differ prior to
fluid loading steps. The GEDVI and PBVI increased in
responding fluid loading steps regardless of GEF.
Hence, baseline CVP and GEDVI were poor predictors
of fluid responsiveness in both GEF groups. When fluid
responsiveness was defined as an increase in CI ≥15%,
changes in CO were also directly associated with changes
in GEDVI, but not in PBVI. Otherwise there were only 4
out of 9 responding steps remaining when defining fluid
responsiveness by 15 vs. 10% CI increases, in patients with
low GEF needing relatively large amounts of fluid. Baseline
GEDVI was not lower in responders than non-responders.



Table 3 Summated fluid loading steps, with responsiveness defined as ≥10% and ≥15% increase in cardiac index (CI),
when systolic cardiac function is reduced or near-normal at 20% cutoff of global ejection fraction (GEF)

GEF <20% (n = 9) GEF ≥20% (n = 7)

CI ≥10% R NR P-value R NR P-value

(n = 9 steps in 6 patients) (n = 18 steps in 9 patients) (n = 6 stepsin 5 patients) (n = 15 steps in 7 patients)

CI, L/min/m2

baseline 3.7 ± 0.7 3.5 ± 0.7 0.04 3.6 ± 1.2 5.0 ± 1.5 0.008

after 4.4 ± 0.8 3.4 ± 0.6 4.3 ± 1.4 5.0 ± 1.5

change 0.7 ± 0.3 0 ± 0.3 n.a. 0.7 ± 0.3 0 ± 0.2 n.a.

CVP, mm Hg

baseline 9 ± 6 11 ± 5 0.41 10 ± 3 10 ± 3 0.68

after 10 ± 6 12 ± 4 10 ± 2 11 ± 3

change 1 ± 1 1 ± 2 <0.001 1 ± 2 2 ± 1 0.004

GEDVI, mL/m2

baseline 1007 ± 306 870 ± 236 0.002 801 ± 186 834 ± 163 0.83

after 1102 ± 313 858 ± 208 872 ± 199 843 ± 167

change 96 ± 59 −12 ± 54 <0.001 70 ± 85 8 ± 38 <0.001

PBVI, mL/m2

baseline 215 ± 95 203 ± 64 0.25 212 ± 51 225 ± 50 0.86

after 250 ± 54 204 ± 52 224 ± 40 227 ± 50

change 34 ± 63 1 ± 69 <0.001 11 ± 52 2 ± 53 <0.001

Fluid, mL 522 ± 120 467 ± 161 0.07 450 ± 176 467 ± 145 0.75

Gelatin/HES/ 3/1/5 6/5/7 0.65 5/6/4 1/3/2 0.24

albumin

CI ≥15% R NR P-value R NR P-value

(n = 4 steps in 4 patients) (n = 23 steps in 9 patients) (n = 5 steps in 4 patients) (n = 16 steps in 7 patients)

CI, L/min/m2

baseline 3.6 ± 1.0 3.6 ± 0.7 0.50 3.6 ± 1.3 4.9 ± 1.5 0.01

after 4.4 ± 1.1 3.7 ± 0 4.4 ± 1.5 5.0 ± 1.5

change 0.9 ± 0.3 0.1 ± 0.3 na 0.8 ± 0.3 0 ± 0.2 na

CVP, mm Hg

baseline 10 ± 4 11 ± 5 0.59 9 ± 3 10 ± 3 0.61

after 11 ± 4 12 ± 5 10 ± 3 11 ± 3

change 1 ± 1 1 ± 1 0.76 1 ± 2 1 ± 1 0.05

GEDVI, mL/m2

baseline 802 ± 214 935 ± 271 0.26 814 ± 205 829 ± 160 0.83

after 935 ± 254 940 ± 277 886 ± 219 841 ± 162

change 133 ± 42 5 ± 63 <0.001 73 ± 96 12 ± 39 <0.001

PBVI, mL/m2

baseline 159 ± 105 216 ± 67 0.17 213 ± 57 224 ± 48 0.68

after 218 ± 26 220 ± 60 215 ± 38 230 ± 50

change 59 ± 87 4 ± 63 0.56 1 ± 51 6 ± 53 <0.001

Fluid, mL 600 ± 0 465 ± 153 <0.001 460 ± 195 462 ± 140 0.84

Gelatin/HES/ 1/1/2 8/5/10 0.67 1/3/1 5/6/5 1.0

albumin

Mean ± SD or number of patients where appropriate. Abbreviations: R, Responders, NR Non-responders, CI Cardiac index, GEF Global ejection fraction,
R Responding fluid loading step, NR non-responding fluid loading step, CVP Central venous pressure, GEDVI Global end-diastolic volume index, PBVI Pulmonary
blood volume index, HES Hydroxyethyl starch, n.a. not applicable.
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Correlations
Changes in PBVI did not correlate to changes in GEDVI
and only the latter related to changes in CI, regardless
of GEF (r = 0.56, P < 0.001; Figure 1). Changes between
0–90 min in SVI correlated to changes in GEDVI in the
low GEF group only (r = 0.70, P = 0.03, n = 9).

Discussion
Our study suggests that systolic cardiac dysfunction
evidenced by a low GEF (29,30) is common in patients
with severe sepsis or septic shock. This dysfunction
occurring in 56% of our patients, independent of cardiac
premorbidity, agrees with the literature [1-3,31]. Although
this phenomenon might impair fluid responsiveness
(9,18,24), our study suggests that fluid responsiveness can
be maintained when the heart dilates, even during
myocardial depression. In contrast, the optimum GEDVI
in patients after cardiovascular surgery ranges from
680–800 mL/m2 [34-36], and these values may thus not
apply in sepsis. A maintained fluid responsiveness at
higher GEDVI conforms to the idea that dilatation dur-
ing sepsis-induced systolic dysfunction is as an adaptive
response associated with survival by maintaining a relatively
high CI [1-3,6,7,9,37]. Indeed, GEDVI was higher prior
to responding than to non-responding steps according
to CI ≥10% increases when GEF was low (7 of 9 [77%]
responding steps had a baseline GEDVI >850 mL/m2).
Also, it was not lower in responding than non-responding
steps according to CI ≥15% increases, in contrast to the
observations that a low baseline GEDVI, albeit dependent
Figure 1 Similar changes in cardiac index (CI,%) versus changes in glo
loading steps in patients with low global ejection fraction (open circl
fraction (closed circles, r = 0.42 P = 0.05) during severe sepsis or septi
on GEF [25], is more often associated with fluid responsive-
ness than a relatively high GEDVI [21,26]. This confirms
that the predictive value for fluid responsiveness of baseline
GEDVI or end-diastolic dimensions, rather than changes, is
imperfect by its dependency on systolic function, also in
sepsis [21,26,27,38,39]. That the GEDVI prior to responding
fluid loading steps was not lower compared to non-
responding steps when GEF ≥20%, can be attributed to
a difference in systolic function [26], since CI was lower
in the latter. Finally, baseline GEDVI may depend on
age and gender [40].
In contrast, we observed that patients with both systolic

dysfunction and inability to dilate, were not fluid respon-
sive. The inability to dilate upon systolic dysfunction could
comply with the impaired relaxation and diastolic dys-
function found on echocardiography either as an isolated
phenomenon or concomitant with systolic dysfunction
in 20-60% of patients with severe sepsis or septic shock
[10-16,25]. The phenomenon appeared associated with
non-survival and was often transient and reversible in
survivors. An additional hypothesis may be the presence
of right ventricular dysfunction, in view of the increase in
CVP. It cannot be excluded that the presence of predom-
inant right ventricular dysfunction and dilatation limiting
left ventricular filling though pericardial constraint may
contribute to the lack of fluid responsiveness. Indeed, right
ventricular dysfunction caused by moderate pulmonary
hypertension (which was not monitored in this study) has
been described to limit fluid responsiveness before [6,39].
Out data show that CVP increases upon fluid loading
bal end-diastolic volume index (GEDVI, mL/m2) upon fluid
es, r = 0.65 P < 0.001) and those with near-normal global ejection
c shock.
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were slightly greater in non-responding than in responding
steps which may also point to right ventricular dysfunction
and dilatation in some of our patients with low GEF.
However, in our study, the increase in CVP was also
greater in non-responding than in responding fluid
loading steps when GEF was near-normal, which may
argue against predominant right ventricular dysfunction
in non-responding fluid loading steps of low GEF patients.
Since we did not perform operator-dependent, bedside
echocardiography simultaneously, to differentiate between
right or left ventricular dilatation, we cannot definitively
decide on diastolic and/or right ventricular dysfunction in
non-responding steps when GEF is low.
Patients with near-normal systolic function were also

fluid-responsive by dilatation when operating in the steep
part of the cardiac function curve. The dilatation associ-
ated with fluid responsiveness, as measured by an increase
in GEDVI, is thus independent of systolic cardiac function.
Our study partially agrees with data obtained by others
suggesting that changes in filling pressures are less helpful
in this respect than changes in GEDVI [21-23,26]. Appar-
ently, the phenomenon that impaired systolic function
renders filling pressures more important than volumes in
the predictive and monitoring value of fluid responsiveness,
while the opposite is true when systolic function is relatively
normal, after cardiovascular surgery [33], may not apply
to sepsis-induced cardiac dysfunction. Otherwise, a higher
PEEP level applied in this series than in the previous one
[27], may have contributed to the poor predictive value of
CVP at low GEF.
Our study has some limitations. The number of patients

is relatively small but the study was undertaken to improve
interpretation of transpulmonary dilution data with fluid
loading in severe sepsis and septic shock rather than to
prove benefits thereof. The correlation between changes in
GEDVI and CI, regardless of GEF, can be overestimated
by mathematical coupling when both are derived from the
same thermodilution curve, as argued before [41]. Since
both PBVI and GEDVI are also derived, among others,
from the same thermodilution curve, mathematical coup-
ling with CI would affect both variables. That PBVI dif-
fered from GEDVI in responding to fluid loading and a
rise in CI ≥15% and, in contrast to GEDVI, did not correl-
ate to CI changes may, however, disfavor mathematical
coupling. The CVP changes per step were relatively small
in contrast to the overall changes over 90 min. Hence, the
right ventricle may have been challenged enough to decide
on cardiac responses to fluid loading. In our previous pub-
lications we also used hypotension/filling pressure criteria
for defining clinical hypovolemia as a common trigger for
fluid challenges [24,28,32]; we evaluated the predictive
values for fluid responsiveness of other measurements
later, to avoid confounding by giving fluids on the basis of
allegedly superior predictors of fluid responsiveness than
CVP. We used the delta CVP filling protocol as a safety
measure rather than to predict fluid responsiveness. CVP
starting values were adjusted for PEEP, in a relatively
arbitrary manner, to roughly account for about 50%
transmission of airway pressure, and CO responses
were evaluated at two levels, even though the clinical
relevance is unknown.

Conclusions
In conclusion, our study suggests that in patients with
sepsis-induced hypotension and systolic cardiac dysfunction,
occurring in about half of patients, fluid responsiveness is
maintained by global cardiac dilatation, as measured by
transpulmonary dilution-derived GEDVI, rather than by an
increase in CVP. Absence of fluid responsiveness in systolic
cardiac dysfunction may be explained by diastolic dysfunc-
tion and/or concomitant right ventricular dysfunction.
Transpulmonary (thermo)dilution-derived GEDVI is more
helpful than CVP in monitoring fluid responsiveness and
non-responsiveness and their mechanisms in sepsis-induced
hypotension, but normal or targeted levels of preload
(GEDVI 680–800 mL/m2) may not apply in this condition.
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